Effect of Sun-Mon Arctic Ocean Storm on Sea Ice

You may remember I posted last Friday about the major North Atlantic storm which was expected to move into the Arctic Ocean Sunday and Monday producing hurricane-force winds, 30 ft+ waves and temperatures over 40 degrees F above normal (near or even above freezing in places). Well that storm advanced through the Arctic and now noticeable effects can be seen (via satellite analysis) on sea ice concentration (amount of ice vs. open water in a given area) and on sea ice sheet growth and resulting extent.

North Atlantic Surface Analysis valid at 06 UTC February 5th (midnight CST) showing the 958 millibar low pressure system off shore northeast Greenland entering the Arctic Ocean from the North Atlantic basin. (US National Weather Service)
Global Forecast System model analysis valid 12 UTC February 5th (6 am CST). This shows the very strong sustained winds and (by Arctic standards north of 80N) extremely warm temperatures during the height of the storm. This was thanks to very strong warm air advection from the Atlantic Ocean. The system had a sub-tropical connection with heat and moisture originating from the subtropical western Atlantic. Average temperatures in many places should be -30 to -15 F (-34 to -26 C). (earth.nullschool.net)

Included are two images of the sea ice concentration…one I saved from the February 3rd, another just posted for February 6th. Lighter blues are for 90-95% concentration, with yellows and reds being for 75-90%.

This slideshow requires JavaScript.

Extent growth basically stopped between February 3-6 (near 13,300,000 sq km for four days).

2018 year-to-date extent (currently at record lows) vs 2016 extent (previous daily record lows for this time of year) and the 1980s average. Sea ice extent and volume collapse is underway in the Arctic Ocean because of Anthropogenic Climate Change caused by abrupt warming in the Arctic (notable since the 1980s, accelerating since the 2000s). 

More very above normal temperatures will hit the Arctic this weekend as a powerful blocking high pressure system over the Pacific (sound familiar…) raises temps once again across Alaska and allows storm tracks to head for the Bering Strait and Chukchi Sea once again. Meanwhile, the Atlantic side will continue to remain “open” with another storm also moving into the region this weekend. No storm appears to be nearly as powerful as the Sunday-Monday event, but the litany of systems bringing at least some wind, wave action and temps not far below the freezing point of salt water is no good for the Arctic.

Temperature anomaly (degrees above or below average) forecast by the GFS model for the Arctic region valid 18 UTC February 10th (noon CST). Normal is based on 1981-2010 baseline. To approximate the major effect of anthropogenic climate change since the end of the 18th century add +0.9 degrees C (K).
GFS maximum temperature forecast valid 18 UTC February 10th (noon CST). Very warm air temperatures on both the Atlantic and Pacific entrances to the Arctic Ocean.

Arctic sea ice is extremely important for everything from Arctic regional ecology, marine biology to effects on overall warming of the Arctic Ocean and surrounding land areas (and permafrost). There is also evidence that the rapid warming of the Arctic because of anthropogenic climate change is altering the polar jet stream circulation which may be leading to an increased frequency and magnitude of extreme weather events. 

Sea ice thickness and thickness anomalies in January 2018. (Zach Labe)

–Meteorologist Nick Humphrey




Meteorological Analysis of January 22, 2017 Great Plains/Midwest Blizzard As It Happened

Here is a meteorological analysis I did on Monday of the blizzard which raked much of the Central Plains and upper Midwest from Nebraska and Kansas to Minnesota and Wisconsin with heavy snow and high winds. It was recorded around 11:30 am CST Monday. Those who follow me on my Facebook page (also see my feed on the sidebar) were able to see it right after it was uploaded, but I’m posting it here for those interested in hearing me discuss the event as it happened. Peak snow totals up to a foot and a half resulted in parts of Nebraska, Iowa and Minnesota. Lincoln and surrounding parts of the town only saw 2-3 inches but the totals increased dramatically not far west and north. We got off easy compared to the one foot and greater totals in northeast Nebraska. Winds gusts throughout the region peaked 45-60 mph. You can hear the noise of the high wind through my door in the video.

By the way, my son Bruce makes a guest appearance as he tries to turn off my computer while recording. Haha.


Strong Winter Storm Impacting portions of Plains and Midwest Early Week

A strong winter storm is pushing across the Great Plains tonight. North of the low will experience widespread blizzard conditions and heavy snow. South of the low milder conditions with rain.


Infrared image, but with surface frontal analysis added, valid at 6 pm CST.


Parts of far southern Nebraska, into Iowa have a tight gradient between little to no snow vs. heavy snow with high winds. An example…my location in Lincoln, NE where the National Weather Service is calling for 3-4 inches for the day Monday and just added the county under a blizzard warning after 24 hrs ago thinking the area would only receive up to 1 inch with gusty winds and much better travel conditions.

A difference less than 24 hrs makes. Lincoln now expects up to half a foot of snow (see below) and places expecting 7-8 inches are now expecting 12-18 inches!


The whole system has been trending southeastward in the models and in reality and so the official forecast has been trended slightly higher and significantly so in places of central and northeastern Nebraska which may get up to a foot with isolated amounts up to 18 inches! The bigger story are winds which may gusts 35-50+ mph across much of the north-central Plains during the night and during the day Monday. This will induce the blizzard conditions, with very low visibilities.


Conditions will improve across Nebraska and South Dakota by tomorrow evening as the storm shifts northeastward, continuing to impact northern Iowa and southern Minnesota, as well as Wisconsin and upper Michigan with locally heavy snow and gusty winds.

If you’re in an area under blizzard or winter storm warnings, stay off the roads during the worst of the conditions unless absolutely necessary as the roads will be treacherous and visibility poor, particularly outside major cities, where snow can blow around easily. If you have to travel, drive slowly and with care.


Thomas Fire in Southern CA becomes 5th largest in state history; 230,000 acres and growing

The Thomas Fire of Ventura and Santa Barbara Counties in Southern California has now become (as of Sunday Night) the 5th largest fire in California State history. And based on trends and fire weather expected, it may go for the state record (273,246 acres).  After winds decreased somewhat Friday afternoon-Saturday, they picked up again on Sunday, causing extreme fire growth to an incredible 50,000 acres and reducing the containment from 15% to 10%.

Growth of Thomas Fire since last Tuesday’s ignition.
Since the fire developed last early-morning Tuesday, it has exhibited extreme fire behavior in intense Santa Ana winds with gusts of 45-80 mph, fanning flames and, more importantly, embers far downwind of the actual fire. Currently, 790 structures have been destroyed with the evacuation of over 88,000 people. A 70 year old woman died after being overtaken by the fire following suffering severe injuries in a car crash. In San Diego County, another woman was badly burned over 50% of her body in the Lilac Fire while helping horses escape from a thoroughbred training facility.  And speaking of horses…46 horses were confirmed killed at San Luis Rey Downs where the trainer was badly injured. The death toll will likely rise among the horses as 450 horses were there when the fire rapidly struck. Many burned to death refusing to leave their stables or running back into them, while others died from shock even after initially safely away from the fire’s path. Meanwhile, another 29 horses suffered a similar fate at a ranch in Los Angeles County’s Creek Fire.

Dry or low precipitation conditions expected in mid-range computer models (this forecast depiction by the Global Forecast System; GFS) for much the Southwest US and Great Plains through December 20th.

Forecast upper-atmospheric wave pattern valid noon CST Monday by the GFS. Powerful ridge of high pressure over the West will continue dry, very abnormally mild conditions while colder weather remains over the eastern US.
Unfortunately, high fire danger will continue through Monday with gusts over 45 mph allowing the Thomas Fire and any other fires which develop to easily spread and do so rapidly. Conditions should relax Monday night before possible re-intensification on Tuesday. As mentioned, the Thomas Fire may reach record territory tomorrow based on trends. And as of now, NO significant measurable rainfall is expected in California (or much of the Southwest US and Great Plains) the next 10 days. A blocking upper-atmospheric high pressure pattern over the Eastern Pacific will certainly allow for intensification of drought conditions and continued dryness and moderate to high fire danger for days to come. I should also note, fire danger will also be elevated on parts of the High Plains. Much of Eastern Colorado into Western Kansas are under red flag warnings for Monday because of expected elevated breezy conditions and low humidity with dry fuels.

—Meteorologist Nick Humphrey


First Game of World Series Tonight…Weather Headline: HOT

The World Series begins tonight in Los Angeles between the LA Dodgers and the Houston Astros. And it begins with record heat in Southern California. Today, in fact, downtown LA is setting a record high for the day and it is the warmest temperature on record for so late in the year. This was after a record high of 102 was set for downtown LA yesterday. So far it has reached 103 downtown and the official high may be higher before the day is done.

First pitch for the World Series is at 5 pm PDT this evening. While temperatures will decrease somewhat by that time, game time temperatures will be in record territory for a World Series Game (95-100 degrees F). The hottest World Series first pitch on record was from a game (cannot remember which) in 2001 in Phoenix when the NY Yankees played on the road against the Arizona Diamondbacks in a starting game temperature of 94 degrees.

In addition to heat, fire danger remains VERY high across Southern California as Santa Ana winds intensified today and will continue into tomorrow. RED FLAG WARNINGS are in effect for parts of SoCal. Gusts of 50-60 mph have caused problems for firefighters as they dealt with brush fires in Granada Hills this morning and Rancho Cucamonga this afternoon (LA Times). 

(Map of Rancho CucamongaMap of Granada Hills)

Game 2 of the World Series (First Pitch at 5 pm PDT Wed) should be slightly “cooler”, but still quite hot…expecting temperatures to start the game in the mid-90s (92-97 degrees F). If you’re going to these games or doing any outdoor activity at all in Southern California…lots of water and be careful with anything that sparks or burns!

US Global Forecast System forecast temperatures at 5 pm PDT Tuesday.

Enjoy the game! Go American League and go Astros!

–Meteorologist Nick Humphrey


WxClimoEd Series, Post #1, Part 2: Understanding Global Climate Change Indicators

Hello Weather & Climate News readers! This post will be the first (Part II) in what will be my ongoing education article series WxClimoEd. I hope to write educational posts on various topics related to weather and climate to help enhance your understanding of various phenomena and their impact on the environment, individuals and society. These posts will present key ideas and concepts and provide occasional linked sources to further, more detailed information.

Understanding Global Climate Change (Indicators)

In Part 2 of this article series on Global Climate Change, I’ll discuss the indicators of climate change in progress on  Earth. Even without the global measurements of temperature, there are plenty of signs in the climate system that change toward a warmer world is in progress.


Earth Undergoing Abrupt Climate Change

While global warming is considered to be detectable since the First Industrial Revolution (after 1750), since the latter half of the 20th century, the environment has begun to exhibit what could be considered “abrupt” changes. Among scientists who study natural abrupt change in the paleoclimate records have had some common thought on what “abrupt” means: 1) Changes in climate which can be witnessed within a human lifetime and 2) the change is very nonlinear; it far exceeds the mechanism which initiated the change in the first place (See this video presentation by Dr. White at the American Geophysical Union Annual Meeting discussing past abrupt climate change in the paleoclimate record). In the past, abrupt change usually occurred as a result of the advance or recession of ice sheets, leading to rapid change in local temperature or regional circulations (or even global distributions of precipitation or temperature patterns). Today, abrupt change is being increasingly witnessed as a result of an already unnaturally fast mechanism (rapid rise in carbon dioxide concentration, resulting in rapid rise in global temperatures relative to natural variability…multi-decadal to centennial  scales vs. multi-millennial).

Here are just some of  the abrupt changes resulting from the changing climate happening now:

  1. Decline in sea ice over the Arctic Ocean

Arctic Sea Ice Volume since 1979. Note gradual and accelerating collapse of sea ice volume. Arctic may fall below 1,000 cubic kilometers at some point in the month of September in as early as several years to a decade or so. This will begin the process toward widespread open ocean in the Arctic for a time in September.
2. Rapid increase in air temperature of the Arctic.

The Arctic (64-90N) has warmed around 3-4 degrees C since the 1881-1910 period (based on NASA data). 2-3 degrees C of warming has occurred just since the 1951-1980 period with notable warming since the year 2000. This has led to not only the rapid decline in Arctic sea ice, but the beginning the melting of land permafrost.

Average air temperatures (over land and ocean) in the Arctic region, relative to 1951-1980 average. Shown is 1984 (year I was born) to 2016. Red box show rapid warming of Arctic since 2000 compared to previous decades. “315” = +3.15 degrees C anomaly. (NASA GISS)
Addendum: The rise in the average temperature of Earth as a whole can count as abrupt, as seen in the earlier graph (farther back up). Most warming has occurred since the 1970s. The top ten warmest years on record going back to 1880 have occurred since 1998 (with 1998 now the last year in the top ten from the 20th century). 2017 is expected to be the 2nd warmest year on record just slightly behind 2016.

3. Increase in Sea Surface Temperatures and Oceanic Heat Content of Global Ocean.

The average sea-surface temperature of the global ocean from 60S-60N has risen around one degree C since the 1881-1910 period. 0.5 degrees C warming has occurred since 1980. Like the global air temperature, SSTs have been most of their record warm years since the turn of the 21st century, with an accelerated pace of warming since 2000 (1.62 degrees C/century currently, compared to 1 degree C/century 1950-2000). 2017 sea surface temperatures are currently running the 2nd warmest on record (NOAA data).

Sea surface temperature anomalies 1880-2016 for various sectors of global ocean. Values on graph are in degrees F. Oceans have warmed roughly 2 degrees F/1 degree C.
As far as oceanic heat content, the oceans have accumulated over 100 zetajoules (1 x 10^23 joules) of heat energy in the upper 700 meters of the global ocean since 1993. An incredible amount of energy, with increasingly accelerated warming in the deep ocean below 700 meters since 1993.

4. Acidification of the Global Ocean.

Earth’s seawater is slightly basic (basic is ph > 7). The global average ph of the oceans has decreased from 8.25 to 8.069 since the 1750s (ph was 8.104 in the 1990s). This is caused by the oceans dissolving carbon dioxide (30-40% of carbon dioxide released by humans dissolves in the oceans). This interaction forms carbonic acid, with further chemical reactions leading to increasing concentrations of the hydronium ion (H+). This leads to a lowering of the ph. The rate of acidifcation is faster than at anytime in the past 300 million years! The rapid acidification has been more pronounced in the Arctic Ocean because of very cold water (colder water can absorb more dissolved gases). When ph falls under 8 in the coming decades (assuming no mitigation), marine life which depend on carbonate structures (shellfish, sea snails, corals, some types of plankton, etc) begin to suffer from the corrosive effects of less basic waters.

5. Sea Level Rise


Sea levels are rising as a result of meltwater from land and thermal expansion as oceans warm. As the atmosphere and oceans continue to warm and weaken the Arctic and Antarctic Ice Sheets, sea levels will continue to rise, with possible nonlinear positive feedbacks accelerating it. It has already accelerated since the end of the 20th century. “King Tides” have become an increasing problem because of sea level rise in the 21st century.

6. Increase in Extreme Weather and Climate Events

The end of the 20th century into the early 21st century has featured a statistical increase in extreme weather events. Climatologists usually classify “extreme” as being 4-5+ standard deviations from the mean of all events. Such increase in extreme events over the course of years means that natural variability is being dominated by global warming, and causing a continuously shifting climate pattern.

The shift in the range of meteorological variables across the bell curve because of climate change. The curve represents the normal distribution of events with natural variability (climate teleconnections and seasonal). The small shift of the mean by climate change causes a significant increase in less common events at one tail as well as an increase in truly extreme events not previously observed in the reference climate regime. (Presentation slide by Erick Fernandes, 2015).
Extreme events include heat, flooding, rainfall rates, drought, and wildfires. All of these occurrences have been increasing the frequency and severity around the world because of climate change. In addition, there is evidence that because of the high rate of warming of the Arctic, the mid-latitude jet stream has become weaker with increased amplitude extremes, leading to short-term and longer-term patterns favorable for extreme conditions at the surface. For example, high amplitude ridges of high pressure which do not move much or reform constantly can lead to extended periods of drought and extreme heat (while other areas downstream may receive cooler temps but heavy rainfall and flooding. This is actually something that is observable on meteorological timescales. Dr. Stefan Rahmstorf discusses the increases in extreme events from climate change in a lecture HERE.

One thing I must emphasize with understanding the impacts of global climate change is that it is impacting the environments of our world now and continue to accelerate in the coming years and decades (assuming no major changes are done). Global warming…the primary force of climate change, caused by our immense release of greenhouse gasses from fossil fuels…is the dominate force behind the rate of change in climate behavior. According to the Intergovernmental Panel on Climate Change in their 5th assessment, the world should actually be experiencing anomalous COOLING right now, but instead we have warmed Earth above and beyond natural long term global temperature variability. So when people ask “Did global warming cause (insert extreme weather event)?”, it is the wrong question. Climate looks at a collection of events for a trend. What is clear is that global warming is NOW causing a statistically significant increase in extreme events and will continue to do so. There is no “new normal” but only a continuous “ramping up” of the Earth’s natural variability toward greater extremes relative to the beginning of the Industrial Revolution, with greater impacts as humanity leaves the stable global climate in existence since the beginning of civilization.

This may be something many do not appreciate, but it is factual. Human civilization has changed Earth’s climate system to the point that we as humans are turning up the “thermostat” and started a multi-centennial experiment in geoengineering. Heat, drought, flooding, rainfall rates, wildfire events, and jet stream amplitudes, as a result, have all increased significantly in just the past 30 yrs.

If the climate were a piece of music…think of Earth’s relatively short-term natural cycles as the melody and global warming as the dominating background harmony from which the melody plays over. If the harmony changes keys, the melody will respond and shift accordingly.

In Part 3, I’ll discuss the projected future impacts of climate change being actively researched (and some already happening) such as food security, human health and living space.


Surreal view…a major hurricane near Western Europe.

Incredible views today…

Hurricane Ophelia set two records: 1) The highest latitude major hurricane on record in the North Atlantic Basin, set beginning at 35.9 N and 2) the most easterly major hurricane on record in the basin, set beginning at 26.6W. It will likely weaken below major hurricane force by Sunday morning as it begins to undergo transition into a frontal cyclone from its interaction with the jet stream and further reduction of sea surface temperatures below 72 degrees F/22 degrees C. However, it will be one for the record books.

Fortunately, Ireland and the United Kingdom will not need to worry about a major hurricane hitting them. They will need to worry about a likely damaging windstorm from a post-tropical hybrid cyclone. The post-tropical incarnation will develop frontal characteristics as it initially weakens, but its strong inner warm-core will continue to release some heat into the system, re-intensifying it as it becomes fully embedded in the mid-latitude westerlies and races into Ireland and the UK Monday afternoon and evening. My updated forecast for Ireland is below. Still expecting winds capable of downing trees and causing major power disruptions. The forecast for intense winds is high in confidence as computer models hone in on the center of the storm either coming ashore the southern tip of Ireland or just grazing the western shore. This is favorable for a “big blow” over the entire island. Residents need to be prepared to stay indoors and stay safe during the day Monday.

Ireland Forecast for Post-Tropical Cyclone Ophelia:


Forecast zones (North and South) used for my forecast.


Monday Morning (After 7 am local time): For the southern half of the island, wind gusts of 40-50 mph (64-80 km/h) will develop during the morning, increasing to 60-85 mph (97-137 km/h) by mid to late morning from the coast, northward. The strongest gusts will be along the coastal areas, especially the south shores where isolated gusts may approach 100 mph (161 km/h). For the northern half of the island, wind gusts to 40 mph will develop mid morning , increasing to 50-60 mph late morning, from south to north.

Monday Afternoon (After noon): For the south, wind gusts of 60-85 mph (97-137 km/h) early afternoon with isolated to 100 mph/161 km/h along the south/southeast shores). For the north, wind gusts of 50-60 mph (80-97 km/h) early afternoon will increase to 60-85 mph by mid afternoon with isolated gusts to 100 mph along the northeast shores, spreading from south to north into the late afternoon.

Monday Night (after 5 pm local time): For the south, wind gusts will gradually decrease to 40-55 mph (64-89 km/h) during the early evening from south to north. For the north, wind gusts will gradually decrease to 40-55 mph during the mid to late evening (after 7 pm) from south to north.

Sea conditions will be hazardous all around Ireland with wind gusts in excess of 100 mph (161 km/h) likely in the south coastal waters and in the Irish Sea.

High-resolution Swiss model showing the tightly-packed circulation of then Post-Tropical Cyclone Ophelia reaching coastal Ireland midday Monday. Damaging winds will be spreading throughout the Irish Republic and Northern Ireland by this time. Shown for illustration of the overall forecast scenario.