High Amplitude Jet Stream Pattern To Lead to Extremely Abnormal Temps for Central/Eastern US; “Blow Torch” Heat to Arctic.

The US will be a land of extremes as a high amplitude jet stream…the story of this winter continues to impact the US as very abnormally cold temperatures impact the Central US and (later) the Great Lakes region, with very abnormal heat spreading northward into the Eastern third of the country mid-week. Sunday, much of the Great Plains were experiencing temperatures 20-25 degrees F above normal (~10-12 degrees C). As the week progresses, the jet stream amplitude over North America will intensify and bring highs of 30 degrees F (15+ C) or greater above normal mid-week to the Ohio and Tennessee Valleys into the mid-Atlantic and New England states. This means mid-Spring highs on the East Coast and a resumption of well below freezing temps over the Central and Northern Plains.

This slideshow requires JavaScript.

In addition to the abnormal temperatures, another major story will be potentially heavy rainfall across a wide swath of the Midwest and Deep South ahead of the accompanying cold front which will push eastward mid-week. Abundant moisture from the Gulf of Mexico will aid in the generation of rainfall, some of which will help short term drought conditions, but could also produce flash flooding.

Moderate risk of flash flooding over portion of Texas, Oklahoma, much of Arkansas and southern Missouri Tuesday.
Tuesday evening forecast surface map showing widespread moderate to heavy rainfall likely from Texas to Michigan.

The Arctic Ocean has been experiencing an extraordinarily warm winter with consistent high heat to the region (relative to regional norms). As a result, sea ice has been suffering severely as the combination of high amplitude high pressure ridging and ocean cyclones push heat, wave action and wind into the sea ice sheet, along with very abnormal sea surface temperature right up against the sea ice (9-18 degrees F/5-10 degrees C above normal). Sea ice extent is currently running at the lowest on record in the history of human civilization, rapid melting already in progress in the northern Bering Sea, and 2017 annual sea ice volume was the lowest on record. The current max extent this season occurred on February 6th. The current earliest maximum peak extent is February 25th in 2015. The current record year for record minimum peak extent is 2017…2018 is currently beating that record and has the 2nd lowest year-to-date volume as well.


The sea ice is showing some signs of refreezing after its early February peak. However, more extreme heat is to come as more storms from both the Bering Sea and the North Atlantic advance heat and moisture into the Arctic Ocean this week. One storm will move over far Eastern Siberia and into the Chukchi Sea on Tuesday. Wednesday, another, stronger storm will approach Greenland, moving over the Canadian Archipelago Thursday, slowly shifting toward the Beaufort Sea Friday.


Note the last two sea level pressure images for 2/23 and 2/24. Not only the strength of the cyclone (in blue) but the tightly packed lines of equal pressure (isobars) between the low pressure system and the strong high pressure system over the Barents Sea, north of Scandinavia. These tightly packed isobars represent a very strong pressure gradient which will result in very strong southerly wind gusts (near hurricane-force) and intense wave action striking the sea ice sheet of the Arctic Ocean mid to late week. This in combination with the very warm, moist air moving into the region will make for a “blow torch” of heat from the Atlantic, eroding the cold conditions of the Arctic, stunting the freeze season further. This will likely lead to further ceasing or recession of sea ice as well.

GFS forecast high temperature for Thursday, showing above freezing temperatures penetrating into the deep Arctic. This may continue into Friday. Today through Tuesday will feature near or above freezing temperatures moving out of the Bering Sea into the southern Chukchi Sea as well.

I’ve been tracking the Arctic all season and there has been a shocking level of persistent warmth in the region with 2-3 degrees C above normal temps (for the region) being quite common many more extreme day higher than that. The Arctic Ocean basin may experience, as a region, anomalous temperatures of an incredible 6-8 degrees C above normal Tuesday-Saturday. This is relative to the 1981-2010 average. However, as climate change is abruptly warming the Arctic region, leading to rapid sea ice loss compared to the past, relative to the late 19th and mid 18th centuries (in the early era of human generated climate change), the anomalies are likely 0.7 or 1  degree C higher than that, respectively.

GFS Anomalous temperature forecasts for the Arctic region valid 00 UTC Feb 23rd. Extreme heat by regional standards over the Arctic for much of the week.

The implications for the collapse of sea ice are quite serious. The sea ice sheet regulates the jet stream by making the Arctic region permanently cold across a wide area. As long it it remains permanent with only modest seasonal melt, it can behave much like a continental ice sheet would behave on the atmosphere (like in Antarctica). The jet stream exists because the Arctic atmosphere is cold throughout the vertical column. The strong temperature gradient with the mid-latitudes is what makes it exist. But with abrupt warming of the Arctic caused by the collapsing ice sheet (which feeds back on accelerating such a collapse), this weakens the jet stream and has been causing it to become wavier with increasingly more extreme and frequent high amplitude patterns (which feedback and melt the Arctic more). Such research has been conducted by scientists such as Dr. Jennifer Francis of Rutgers University and others, showing the jet stream slowing and becoming higher in amplitude since the 1960s. Such abrupt warming also leads events such as “sudden stratospheric warming” and “splitting” of the polar vortex, supporting Arctic blasts to the south and abundant heat transport to the Arctic.

If the ice sheet collapses completely (no more in summer, low to little meaningful extent in the polar night), you get even more abrupt warming of the sea surface from below and above through collapse of the ocean thermocline (persistently cold water “cap” atop somewhat warmer water) and air temperature inversion (warmer air atop cold surface air) as well as from the much reduced albedo (white, reflective surface). The warming atmospheric column with height further reduces the temperature gradient with the mid-latitudes, weakening the jet further and causing more extreme “wave action”, greater blocking patterns as you get these big waves and little eastward progression of systems and the polar jet actually retreats farther north. This can dramatically shift precipitation patterns northward could cause much hotter, drier conditions in the mid-latitudes. It’s been a major concern for a long time in in climate change science, but a process thought to be of concern in the “high emissions” scenarios of the mid to late 21st century as increasing aridity across the mid-latitudes would destroy forests and not allow crops to be grown where they are currently grown because of increasing extreme heat (or storms). So this would have impacts not only in the Arctic, but also in the mid-latitudes. Unfortunately, a recent phrase has been increasing use the past few years. “Faster than expected”. Some prominent researchers openly admit an ice-free Arctic may be possible before 2020. See also HERE.

I’ll have more on the situation in the Arctic this week as well as the heavy rainfall in the US. Also, keep an eye on Tropical Storm Gita approaching New Zealand to start the week!

–Meteorologist Nick Humphrey


Wild Ride – More Cold Intrusions into North America/Europe, Powerful Warm Storm Headed for Arctic Ocean Monday

This winter has been a fascinating one to say the least. Wild oscillations between very abnormally warm and very abnormally cold while other places are are just consistently very warm. Or perhaps just very dry. Much of this has been thanks to the current La Nina pattern in place over the Tropical Pacific. The atmospheric pattern leading to abnormally cooler waters over the eastern tropical region also lead to the promotion of strong high pressure systems over the Central North Pacific with unusually higher amplitude jet streams. This favors a polar jet aiming for the Pacific Northwest, northern tier and into the northeastern third of the country while the Southwest and Sunbelt see drier conditions.


Conditions of at least “Abnormally Dry” cover over 67% of the Continental US. It is the most coverage in abnormally dry conditions since February 5, 2013. It is, interestingly, the 49th greatest extent of at least Abnormally Dry conditions on record out of 944 recorded weekly updates (over 18 years now). Conditions of at least D1 “Moderate Drought” coverage over 38% of the Continental US. It is the most coverage in D1 conditions since April 22, 2014.

Of note with this pattern regime has been the, at times, extreme nature of the jet stream amplitudes. They have driven very warm temperatures into the Arctic with record low sea ice across the Arctic Ocean, the warmest December on record across the state of Alaska, and record high temperatures in portions of the Southwest US in January with the aforementioned persistent drying and intensifying drought concerns. 

Meanwhile, significant Arctic intrusions have been impacting the US, particularly in January and more appear likely in February as “teleconnections”…patterns in global circulation which give clues toward a general weather regime for a region of the world…show signs of further intense extreme jet stream amplitudes with very strong upper-level high pressure systems blocking storm tracks over the north Pacific and Bering Sea, which downstream will mean a cross polar flow in the upper atmosphere of very cold air upper troughs and surface Arctic fronts and high pressure systems over northern Plains/Midwest into the Northeast US. The Deep South should escape as warmer air from the subtropics attempts to advance north and may keep the Arctic air at bay. Europe looks to also have periods of similar cold (and interior Siberia of course! Check out the incredible cold they had last month).

Temperature Anomalies in the US (Sunday, Thursday) and in Europe (Monday). Widespread temps below freezing during the day in parts of central and Eastern US and central and eastern Europe during these cold periods. Very persistent warmth with highs in the 60-80s in the Southwest US.


Powerful Arctic Ocean Storm Sunday-Tuesday

While the mid-latitudes get hit with Arctic cold, the Arctic is being pounded by significant amounts of mid-latitude heat. And now the computer models are pointing towards a major North Atlantic storm developing early this weekend, moving over Greenland and then into the middle of the Arctic Ocean Sunday night-Monday. This storm will be very powerful…as strong as any classic North Atlantic ocean winter storm, and will bring significant amounts of high winds, battering waves and high “heat” to the Arctic. How warm? Perhaps as warm as 50-60 degrees F above normal temperatures over much of the Arctic Ocean. This will mean highs near or just above freezing up to the North Pole!

Temperature forecast by the Global Forecast System model for noon CST Monday showing near or above freezing temperature penetrating deep into the interior Arctic as a result of intense warm air advection.
A significant sector of the Arctic Ocean will have air temperatures over 40 degrees F above normal (or higher) during the day Monday.

This storm is forecast to initially form southwest of the tip of Greenland and east of Quebec Friday and will beginning moving over Greenland Saturday. Sunday, the system will begin to impact the Arctic, with warm and moisture transport from the North Atlantic (all the way from the Azores!) increasing abruptly late-Sunday. By Monday morning, models indicate waves moving up the Fram Strait toward the Arctic may be as high as 30 ft in strong south-southwesterly flow. Over the sea ice sheet, the low pressure system will be intense as it emerges from Greenland…possibly sub-960 millibars with widespread wind gusts of up to hurricane-force likely over much of the interior Arctic Ocean east and south of the low on the Atlantic side.

GFS depiction of the powerful low pressure system over the central Arctic Ocean on Monday. The European model has a similar strength low. Winds up to hurricane-force wind gusts and battering waves are likely conditions for the tenuous sea ice.
Forecast significant wave heights for early Monday with the worst of it in the Fram Strait.

Why this storm is so significant is because the Arctic sea ice is continuing to undergo collapse because of anthropogenic climate change. If the Arctic climate warms to the point that it simply cannot support sea ice in the warm season, with the Arctic Ocean warming as a result of very low albedo (reflectivity to visible light which would otherwise limit warming) compared to white ice (or latent heat of melting/freezing, instead of heat going into warming the ocean directly), this will have dramatic effects on not only regional climate but global climate (I can go into greater details in this in the comments or provide resources). Generally this was something expected much later in the future, but may occur earlier than expected, although it is difficult to predict when exactly this will occur as it would be nonlinear and abrupt. However, as mentioned, ice volume and extent for ice are running at record or near record lows across the Arctic Basin. Some of these effects on albedo and heating have already begun to be felt over the past several years on the marginal seas which are beginning to become increasingly ice free during the warm season (Chukchi Sea, Beaufort Sea, Eastern Siberian Sea), but it’s important to not have the interior Arctic Ocean lose significant ice. Particularly in the winter, but it has been struggling just to freeze this winter! For more on recent sea ice developments see these videos by Paul Beckwith (M.Sc, PhD candidate; HERE and HERE).

In the meantime, while we have year to year variability…various teleconnection patterns, anthropogenic forcing (CO2, other gasses) is the most dominant regime on our climate and so even while I must emphasize weather is not climate…I must also emphasize that climate is a statistical distribution of weather events; and so extreme weather events which are increasing in frequency and magnitude are a sign of our climate shifting to more extreme conditions and in sensitive places (particularly cold climates like the Arctic), those shifts are incredibly noticeable.

–Meteorologist Nick Humphrey


Meteorological Analysis of January 22, 2017 Great Plains/Midwest Blizzard As It Happened

Here is a meteorological analysis I did on Monday of the blizzard which raked much of the Central Plains and upper Midwest from Nebraska and Kansas to Minnesota and Wisconsin with heavy snow and high winds. It was recorded around 11:30 am CST Monday. Those who follow me on my Facebook page (also see my feed on the sidebar) were able to see it right after it was uploaded, but I’m posting it here for those interested in hearing me discuss the event as it happened. Peak snow totals up to a foot and a half resulted in parts of Nebraska, Iowa and Minnesota. Lincoln and surrounding parts of the town only saw 2-3 inches but the totals increased dramatically not far west and north. We got off easy compared to the one foot and greater totals in northeast Nebraska. Winds gusts throughout the region peaked 45-60 mph. You can hear the noise of the high wind through my door in the video.

By the way, my son Bruce makes a guest appearance as he tries to turn off my computer while recording. Haha.


Multiple Arctic Air Surges Expected Into Next Week

After periods of very abnormally warm weather, surges of very cold air from the Arctic will be barreling out of Canada starting Thursday into next week.

This slideshow requires JavaScript.

European model model depiction of morning temperatures over the US and southern Canada at 6 am CST Tuesday 12/26. May be colder with winds.
These cold surges are a result of a highly amplified jet stream which has been shifting around North America for the past few weeks with a strong ridge over the Western US and trough over the US. However, the ridge is retreating over the Eastern Pacific and intensifying into Alaska, heating up the Arctic and putting southern Canada and the US in the ice box.

US Global Forecast System model forecast for 6 pm CST Thursday 12/21 showing highly amplified wave pattern of atmosphere at 500 millibar pressure surface (approximately 18,000 ft altitude).

“HOT” Arctic. Temperatures in Barrow, AK running over 30 degrees F above normal on Thursday (normal high is -3 F). Normal low is -15 F. That abnormal warmth will become less intense, but persist into next week.
The Storm Prediction Center does have a marginal risk of severe weather ahead of this week’s major frontal system over Southeast TX Friday. The risk appears to be for a isolated severe thunderstorm wind gusts over 60 mph and low risks of tornadoes.


Here in the land of the corn? We should peak in the upper-30s tomorrow morning and then have falling temperatures and increasing winds during the afternoon with freezing drizzle with increasing breezy conditions out of the northwest. Not much snow accumulation expected here, although it could get slick from some of the freezing precipitation. Anyone else in the middle of the country, be careful as the cold air moves in if you’re on the roads!

Quick update on the Thomas Fire in California:

As of this post, the fire burned 272,000 acres…the 2nd largest in California state history (within less than 1500 acres of the state record). It has killed two people, including a firefighter. It is 60% contained. It began December 4th.

No significant rainfall is expected is expected in Southern California through the end of the month based on computer models. The Eastern Pacific ridge of high pressure seems to have a dominant grip on the region unfortunately. A combination of a La Nina pattern and climate change-induced extremely low Arctic sea ice and warm Arctic causing an incredibly amplified jet stream which tends to produce “stuck” and “stale” patterns.

European model forecast accumulated precipitation through 12/30 showing the possibility of little to no measurable rain or snowfall in much of the Southwest US. Been little to be had in that region in December.
We can only wait and see if the lack of rain and snow forecast in the models in fact verifies for the Southwest US.

Happy first day of (astronomical) winter!

–Meteorologist Nick Humphrey


Major Pattern Change for North America and Arctic Next Week.

A major weather pattern shift will be occur next week for North America into the Arctic as the jet stream…which already has been largely higher in amplitude and experiencing some blocking with little eastward progression of long-waves in the upper-atmosphere, will becoming extremely amplified (north-south) next week bringing very warm air up into Alaska, Yukon and the Arctic Ocean and a modified Arctic air mass from Nunavut and the Northwest Territories of Canada into the central US. Let’s take a look at things.

The current pattern dominating North America has been strong ridge of high pressure over the Western US or Eastern Pacific with a prominent trough over the eastern US with some fluctuation in the wave pattern east or west, but not much significant change, except in the center of the country which has seen more significant swings between these two states. The east, including even the Southeast saw significant snow. The west has seen abnormal warmth with record fires in California. Currently the ridge of upper-atmosphere ridge is forecast by US and European models to build to an extremely high amplitude the end of next week north over portions of Alaska and Yukon and into the margins of the Arctic Ocean. This as a very intense trough is forced south over the US.

European model forecast for the wave pattern of the mid-level atmosphere valid 6 pm CST 12/23.
This extreme amplification will drive an Arctic surface air high pressure system out of the Northwest Territories with very cold air this week, with this air mass advancing into the US beginning Thursday into this weekend. Meanwhile stormier conditions will moving from the Bering Sea into the Chukchi Sea driving up temperatures in the far north. And California with all the fires? Remains abnormally warm and dry.

Temperatures the afternoon of Christmas Eve (European Model forecast).

Greatest signal for low to no precipitation the next 10 days is south-central to southern CA into much of AZ and NV.
The Arctic:

As I spoke about in a previous post, the Arctic is having its second warmest year on record and lowest annual sea ice volume on record as climate change continues to abnormally warm the Arctic. The highly amplified wave pattern is much a product of the current weak La Nina pattern. However, the intensity of the amplification and resulting amplified warming of the Arctic is also a function of the long-term global warming regime dominating the polar region and causing record warmth and reductions in sea ice. I noticed this amplified wave pattern will have interesting impacts on the Arctic weather pattern and possibly the tenuous sea ice beginning next week.

Right now, a prominent surface high pressure region…associated with the Beaufort Gyre…is over the Arctic Ocean north of Alaska and eastern Siberia. By the middle of next week, this gyre will weaken as strong low pressure systems approach the Arctic from both the Bering Sea and the far North Atlantic.

Prominent high pressure of the Beaufort Gyre over the sea ice of the Arctic Ocean.

European Model depiction of low pressure system advancing into the Arctic Ocean from the Bering Sea on Christmas Eve. This may be the strongest in a series of lows (2-3) beginning late week. Stormy conditions will also impact areas near Svalbard (islands just east of northeast Greenland) late-week and weekend.
The Gyre is vulnerable because of the areas of open water and tenuous sea ice which remains over the Chukchi Sea…record low extent for this time of year. The ice being cold creates the surface high pressure system and clockwise circulation. But last year, this gyre collapsed because of slow sea ice growth allowing for storms with warm, moist air to move into the Arctic and further slowed sea ice growth. It appears this may be forecast to happen again during the tail end of this month.

European Model forecast surface temperatures showing well above normal temps shifting northward late week into Christmas Eve over the Arctic Ocean north Svalbard and the Chukchi Sea. While exact values will change, general pattern appears likely.
Depending on the strength of the low pressure systems, not only will the tenuous sea ice in the Arctic…widespread areas 1.5 meters or less in thickness (less than a meter in the Chukchi Sea)…deal with more warm air temperatures limiting sea ice growth, but also wave action which may destroy the ice, particularly from the Pacific side as cyclones are expected to move across the Arctic from the Pacific. We’ll see how much impact those storms have and how intense they are. If the upper-level wave pattern is as amplified as forecast by models 5-8 days out (no reason to think otherwise as he reach the point of good reliability for the upper-atmosphere), it’s a good set up for strong low pressure systems to develop in both the North Pacific and North Atlantic. And with the highly amplified blocking high over the Eastern Pacific, storms will be forced to track into Alaska and into the Chukchi and Beaufort Seas and deep Arctic Ocean.

–Meteorologist Nick Humphrey


Arctic Sea Ice Extent Rapidly Decreasing Because of Climate Change; Weather & Climate Implications

Today, NOAA presented the State of the Arctic report at the American Geophysical Union annual conference in New Orleans. The news from the report was devastating for potential weather and climate impacts. Lots of important info to talk about from this! Let’s summarize:

  1. Annual Arctic sea ice extent is the lowest in 1600 years. This is based on proxy data (tree rings, lake sediments, ice cores from the Greenland Ice Sheet). There has been an abrupt decrease in extent during the 20th century (continuing to present). 24991395_10215050817330895_108575701643656859_n
  2. Arctic sea ice extent reached a record minimum in the warm season in 2012. However, 2015-17 witnessed consecutive record low maximum extents in the cold season. 2016 also had the lowest extent on record in November or December. 2017 is also witnessing top two or three low daily extents in November into December, with record low sea ice in the northern Bering Sea and the Chukchi Sea (north of the Bering Strait between Alaska and Russia). Also very notable, sea ice VOLUME (which includes thickness of ice) has continued to suffer with 2015-17 in the top 4 for the lowest volume on record going back to 1979 (and based on decreasing of sea ice extent and thickness, likely much much longer than that). Multi-year ice…ice more than a year old…is now nearly extinct in the Arctic Ocean.

    Arctic Sea Ice Volume since 1979. Note consistent and accelerating collapse of sea ice volume. Arctic ice volume may fall below the 2012 record at some point in the month of September in the next several years.
  3. The Arctic had its warmest year on record in 2016 and its second warmest year on record in 2017 in reliable records. The climate of the Arctic is warming to the point that permafrost is increasingly melting releasing methane and carbon dioxide, methane emissions from what are called methane hydrates (methane gas locked in water ice) are increasing from the very shallow continental shelves surrounding the Arctic Ocean and mid-latitude weather patterns are becoming altered because of reduced sea ice (more on this shortly). The Arctic tundra is also greening at an increasing rate because of rapid warming.
  4. NOAA specifically states that “the Arctic shows no signs of returning to a reliably frozen region of recent decades” because of continued climate change related warming.

Discussion – Leaving the Ice Age Era:

One thing that we must remember about the sea ice of the Arctic Ocean (and the Southern Ocean around Antarctica) is that sea ice is a product of Ice Age eras. Our planet has had a tendency historically to flip between two global climate equilibrium states with dramatically different regional weather and seasonal patterns. The Ice Ages and the Hot House “Jurrasic Park” climates have been the two long-term dominating climate regimes in Earth’s history. One characterized by huge ice sheets and low sea levels, the other characterized by no ice sheets, no sea ice and high sea levels. Human civilization has flourished in the latest interglacial period in the Ice Age era because the climate has remained largely stable for roughly 10,000 years (-1 to +0.5 degrees C relative to mid-20th century climate) and mild enough to for extensive agriculture and settlements.

Estimated temperature of Planet Earth from 550 million years ago to the end of the 20th century.

But now, because of Anthropogenic Global Warming (AGW) from climate change, we are leaving that stability in the geologic blink of an eye.

Projected rise in global temperature of 4 degrees C/8 degrees F (relative to mid-20th century) during the 21st century relative to the past 10,000 years.

Probably the most important regulars of climate during Interglacials are the “refrigerators” of the north and south…the Arctic Ocean sea ice and Antarctic Ice Sheet (also Greenland Ice Sheet). However, as temperatures warm because of human carbon dioxide emissions trapping heat in the global climate system, that heat warms the atmosphere and ocean, attacking the sea ice by providing excess latent heat of melting. For the Arctic, this reduces the sea ice extent and volume decade after decade. Eventually, it will get to a point, where sea ice will become so thin and tenuous, it will undergo collapse to what has been called a “blue ocean” event with 1,000,000 sq km or less ice at a minimum in September (2012 extent minimum record was 3.41 million sq km). The 2016 and 2017 extent minimums were in the top 10 with 4.14 and 4.64 million sq km, 2nd and 8th respectively. 8 of the top 10 warm season minimum extents (in km) have occurred since 2010 in the now 39 year record. The Arctic Ocean and lower atmosphere are warming and becoming more like the high latitude North Atlantic. Eventually sea ice is expected to disappear completely in the warm season in the Arctic. Some climate scientists have suggested over the past several years that the “blue ocean” event resulting from a collapse of sea ice extent could occur between 2015-2020 or so as multi-year ice has nearly gone extinct, leaving thin ice vulnerable to quick melting and battering waves from cyclones. Computer models have been terrible at dealing with the end of sea ice in the Arctic, suggesting it would stick around into the second half of this century.

Discussion – Weather and Climate Implications:

So why does loss of sea ice matter? Sea ice regulates the climate of the world in multiple ways. It acts as large white surface which reflects most of the shortwave solar radiation from the sun (high albedo). As a result, it keeps the Arctic and Northern Hemisphere (and world) cooler than otherwise. It’s wide physical presence means heat entering the Arctic Ocean goes into melting the ice in the warm season (latent heat of melting; heat goes into phase change of water from solid to liquid) instead of heating the ocean and atmosphere dramatically (sensible heat to change temperature). Losing sea ice ends its presence as a climate regulator, allowing for more abrupt warming of the atmosphere-ocean system and increasing moisture content in the atmosphere (water vapor is an additional greenhouse gas; and increased clouds may reflect some radiation, but also can limit cooling in darkness). In addition, the Arctic Ocean will warm as it is a dark surface (low albedo). Increasing ocean warming in the marginal seas of the Arctic Ocean is already leading to increased methane emissions from the shallow continental shelves (as subsea permafrost thaw the clathrates) and more rapid warming will lead to an increase in emissions of methane and carbon dioxide from land permafrost (see discussion by Arctic climate scientist Dr. Peter Wadhams of Cambridge University on YouTube). Methane is over 100 times more powerful greenhouse gas than carbon dioxide on a timescale of several years (it dissipates far faster in the atmosphere, but sudden releases can increase warming quickly). And all of these feedbacks will much more quickly destroy the sea ice extent through further warming for a longer period in the warm season until ice disappears completely.

Increased warming of the Arctic also has impacts on mid-latitude weather. There has been research suggesting that the jet stream can be strongly influenced by Arctic warming and sea ice extent (see discussion by Dr. Jennifer Francis on YouTube). This can include a weakening of the upper-level jet stream which depends on the temperature difference between the upper-level mid-latitudes and polar atmosphere (known in meteorology as “baroclinic instability”). This weakening can lead to the jet stream developing high-amplitude waves more frequently, allowing for powerful upper-level ridges of high pressure to develop and cause blocking of the progressive westerly flow. This blocking can cause more frequent stagnant weather for locations, developing droughts in some areas through prolonged dryness, long periods of heavy precipitation in other regions as well as places of very abnormally warm temps (greater extreme summer heat) vs. colder temperatures (but the warmth always significantly outpaces the cold). Increased warming of the atmosphere in general also increases rainfall rates. In addition, paradoxically, while parts of the mid-latitudes may go through below normal temps and cold weather, the powerful ridging can produce extremely abnormally warm temperatures over the Arctic regions, intensifying the warming of the far north.

An identical pattern to this has largely set up over the Northern Hemisphere November into December.

Powerful high-amplitude ridges over the Eastern Pacific and North Atlantic. Pattern relatively stagnant at this time.
Reanalysis of the average temperature of Earth and specified regions over the last 30 days (1981-2010 baseline…add 0.7 C to compare to late 19th century). Note extensive, persistent anomalous warmth of the Arctic.

These effects may overall lead to more abrupt warming of the world as a whole as well as (more importantly) changes in rainfall and snowfall patterns, relevant for crops and food security from increasing summer extremes (heat stress and heavy rainfall) and water resources (snow pack, groundwater, etc). Also relevant for forest health (destruction by increasing wildfires as well as bug infestations killing hundreds of millions of trees in the Western US). And a running theme in stories on climate change recently? “Faster than expected” or “Faster than previously thought”. The importance of Arctic sea ice cannot be overstated and, unfortunately, this major tipping point…which I would consider a “keystone” tipping point because of what effects it can have down the line on other parts of the climate system…seems to be on the brink. It has been 2.6 million years since significant sea ice did not regularly exist in the warm season in the Arctic Ocean.

The statistics of weather has already changed significantly because of global warming with far more extreme heat events, drought periods and heavy precipitation events than in the mid-20th century (see presentation by Dr. Aaron Thierry on shift to more extreme weather conditions; starts 12:30 min, recommend watching through 20:30 min; also see discussion of climate change on increasing extreme events by Dr. Stefan Rahmstorf). Going past tipping points far earlier than expected by climate models will increase the likelihood for far more extreme weather events as weather patterns and circulations change (in some cases difficult to predict ways). Clearly, the world still needs adequate mitigation and adaptation measures to deal with these rapid and possibly abrupt changes.

For more info into how climate change influenced global extreme weather events in 2016, see the latest report (issued today) by the American Meteorological Society with attribution studies on last year’s significant events.

–Meteorologist Nick Humphrey

If you like what you read and appreciate the time I put into writing on weather and climate topics, feel free to donate with PAYPAL. Every little bit helps a lot! Thank you!


Thomas Fire in Southern CA becomes 5th largest in state history; 230,000 acres and growing

The Thomas Fire of Ventura and Santa Barbara Counties in Southern California has now become (as of Sunday Night) the 5th largest fire in California State history. And based on trends and fire weather expected, it may go for the state record (273,246 acres).  After winds decreased somewhat Friday afternoon-Saturday, they picked up again on Sunday, causing extreme fire growth to an incredible 50,000 acres and reducing the containment from 15% to 10%.

Growth of Thomas Fire since last Tuesday’s ignition.
Since the fire developed last early-morning Tuesday, it has exhibited extreme fire behavior in intense Santa Ana winds with gusts of 45-80 mph, fanning flames and, more importantly, embers far downwind of the actual fire. Currently, 790 structures have been destroyed with the evacuation of over 88,000 people. A 70 year old woman died after being overtaken by the fire following suffering severe injuries in a car crash. In San Diego County, another woman was badly burned over 50% of her body in the Lilac Fire while helping horses escape from a thoroughbred training facility.  And speaking of horses…46 horses were confirmed killed at San Luis Rey Downs where the trainer was badly injured. The death toll will likely rise among the horses as 450 horses were there when the fire rapidly struck. Many burned to death refusing to leave their stables or running back into them, while others died from shock even after initially safely away from the fire’s path. Meanwhile, another 29 horses suffered a similar fate at a ranch in Los Angeles County’s Creek Fire.

Dry or low precipitation conditions expected in mid-range computer models (this forecast depiction by the Global Forecast System; GFS) for much the Southwest US and Great Plains through December 20th.

Forecast upper-atmospheric wave pattern valid noon CST Monday by the GFS. Powerful ridge of high pressure over the West will continue dry, very abnormally mild conditions while colder weather remains over the eastern US.
Unfortunately, high fire danger will continue through Monday with gusts over 45 mph allowing the Thomas Fire and any other fires which develop to easily spread and do so rapidly. Conditions should relax Monday night before possible re-intensification on Tuesday. As mentioned, the Thomas Fire may reach record territory tomorrow based on trends. And as of now, NO significant measurable rainfall is expected in California (or much of the Southwest US and Great Plains) the next 10 days. A blocking upper-atmospheric high pressure pattern over the Eastern Pacific will certainly allow for intensification of drought conditions and continued dryness and moderate to high fire danger for days to come. I should also note, fire danger will also be elevated on parts of the High Plains. Much of Eastern Colorado into Western Kansas are under red flag warnings for Monday because of expected elevated breezy conditions and low humidity with dry fuels.

—Meteorologist Nick Humphrey