Global Climate Change and its Potential Connection to Hurricane Activity (cited research)

Because of recent North Atlantic Hurricane Season activity…many people have questioned whether hurricanes are becoming stronger and more numerous because of climate change. In the social media universe, I’ve seen many opinionated debates within the general public, as well as meteorologists and perhaps a few sprinkling of climatologist opinions here and there. Not to mention, interesting statements from non-climate scientists. What I have not seen much, however, is any discussion of peer-reviewed research on the topic. There’s so much knowledge being gathered every year by scientists trying to answer important questions about our past, present and future. How climate change will impact regional weather and climates is one of the most important questions because of potential impacts to people, agriculture and natural resources.

I decided to do a (very brief) search of literature on science’s current understanding of climate change as it relates to tropical cyclones. I looked into both the potential connection of global warming to these events in the current climate (attribution), as well as projections for these events based on the “business-as-usual” scenario for carbon dioxide emissions, which is a high emissions scenario and steady increase in CO2 concentration. Research cited are just a sampling of what’s out there and what I looked over. Here are some themes I found interesting (takeaway statements at the end):

Climate models* appear to show a signal toward more intense (Category 4-5 Saffir-Simpson) tropical cyclones overall in the world by the latter half of the 21st century. However, there is also a potential for a downward trend in cyclone numbers in many basins (see #1-4).

The decrease in overall cyclone numbers by the second half of the century is thought to be a product of increasing vertical wind shear over tropical oceans limiting weaker storms. However, many researchers expect there to be a significant upward trend in more intense storms (Category 4-5) as the oceans continue to warm and tropical cyclone formation and track density moves poleward. So formerly less favorable sub-regions of basins may see an overall increase in cyclone activity (with more storms which will be stronger than before in those regions) and in the increasingly less hospitable regions (over the long term), storms which do form when conditions are favorable on short time scales may see cyclones which are also more intense than in years past.

As for historical conditions leading to the present…there does not appear to be a conclusive signature by global warming on tropical cyclone intensity outside of natural variability on a global scale (3-4). However, some regional signals related to frequency changes are being actively studied. 

There is some suggestion (4) based on modeling past climate change to the present time that warming (which would enhance the potential intensity for hurricanes) has been muted by the industrial production of aerosols (particulates like sulfates and nitrates), which actually reflect sunlight from reaching Earth’s surface. However, as warming continues into mid-century, its effect of trapping heat will begin to significantly exceed aerosol cooling effects leading to the more pronounced impacts on cyclone intensity stated earlier (unless CO2 emissions are significantly reduced soon). So while global warming is happening in the background, hurricane potential intensity as we currently witness it is likely still being dominated by natural cycles. (For more on climate change research into tropical cyclones, you can also see this webinar done by climate change researcher Dr. Kerry Emanuel for Climate Central).

With that said, some researchers see signs of a global warming signature associated with recent increased tropical cyclone *frequency* in sub-regions of basins. These include the far eastern portion of the North Atlantic Basin (4), close to the East Asian Coast (5), and a portion of the North-Central Pacific Basin (6). Research is still ongoing on global warming’s past and future influence on activity in individual tropical cyclone basins.

Meanwhile, there is evidence of other impacts related to tropical cyclones (and other significant weather phenomena) and climate change. These include higher rainfall rates (7) and higher storm surge related to sea-level rise from the melting polar ice sheets and thermal expansion of the oceans (8). In addition, there is some scientific evidence that tropical cyclones in recent decades have begun to intensify more rapidly because of increased ocean warming (9). And while not completely clear yet whether it is fully tied to climate change, it is known that the observed North Atlantic Power Dissipation Index (PDI) has increased significantly since the mid-1970s (10; positively correlated to sea surface temperatures) and globally, the strongest tropical cyclones in respective basins have grown stronger since 1981 (Elsner et al, 2008…not included here). Note that scientific critics point out the use of observational data with differences in quality – satellite intensity estimates and reconnaissance flights (or lack of them) – over recent decades could put some uncertainty in these results.

My thoughts? Although inconclusive, possible intensity signals may be a hint of the projected effects of climate change as PDI and high-end cyclone intensity are highly correlated to sea surface temperatures. SSTs are increasing from global warming and this would connect with what climate models suggest of future tropical cyclone activity, if these historical trends are, in fact partially related to climate change.

The Takeaways:

  1. Tropical cyclone intensity at the highest end of the scale appears likely to increase through the 21st century because of climate change, especially if human civilization does not significantly reduce greenhouse gas emissions soon.
  2. While a current climate change signal to intensity is difficult to detect and still a matter of debate, storms in recent decades appear to be intensifying faster, are capable of producing more extreme precipitation events and higher storm surges because of rising sea levels caused by ice sheet melting and thermal ocean expansion. There also appears to be some detectable changes in frequency of storms within individual basins which may locally enhance risk.
  3. Regardless of the exact changes in frequency and intensity of tropical cyclones, the risks to individuals and society because of climate change will increase into the coming decades. It will be important for people and governments to make decisions (beyond greenhouse gas emissions) related to property, coastal land use and emergency management policy to mitigate increasing tropical cyclone hazards, particularly from water (storm surge/inland flooding).

Note: It is of EXTREME importance that those with a desire to communicate climate change issues try to inform our fellow citizens to the best of our ability. Climate change is one of the important issues facing our world (the impact on the global food supply and human health may be actually of greatest importance, but rarely discussed as those aren’t “sexy” topics…). People have their thoughts on the issue based on experiences, politics, religious/spiritual beliefs, etc. However, at the end of the day, we must inform and connect what we know to people’s concerns and allow people to decide as they may. Without censorship (“We can’t discuss climate change right now!”) or nonsensical exaggerations (“So many hurricanes, it’s a new era of superstorms!”). Stay informed (give informed opinions) and tell people why they should care as it relates to their lives. Like everything else we should communicate to the concerns of people. Considering most Americans are now, in fact, concerned about climate change, there’s really NO excuse not to discuss the issue in a serious, informed manner if we have the interest to discuss it at all. 


Additional Note: *-Climate models are not weather forecast models. They do not forecast the atmosphere using initial conditions, but take a climate state (for example, our current climate) and adjust “forcings” on the climate system (carbon dioxide emissions for example). The effect of these changes to “boundary conditions” over time are interpreted for land, sea, the cryosphere and (for Earth System models), the biosphere. Global climate is based on thermodynamic and hydrologic balances which will look for equilibrium when changes to a part of the system are applied. (For more on climate models you can see this webinar by Research Meteorologist Keith Dixon of NOAA’s Geophysical Fluid Dynamics Laboratory for Climate Central).

References (links are PDFs):

#1 – Bell et al. (2013)

#2 – Murakami et al. (2011)

#3 – Wang and Wu. (2013)

#4 –  Sobel et al. (2016)

#5 – Cheng-lin et al. (2016)

#6 – Murakami et al. (2015)

#7 – Knutson et al. (2013)

#8 – Jevrejeva et al. (2016)

#9 – Kishtawal et al. (2012)

#10 – Emanual (2005)

—Meteorologist Nick Humphrey

Advertisements

JPL 2017 Eclipse Simulator

Anyone want to know what the 2017 Eclipse will look like at your location with nice graphics and all? Check out this excellent simulator put together by NASA’s Jet Propulsion Laboratory. You’ll be able to animate the eclipse for any given location in the US from beginning to end and find out what to expect. I made a collection of some of the locations which will experience partial eclipses (all at their time of maximum eclipse). All these location were in areas of 75% or greater obscuration of the solar disk. Optical and atmospheric effects begin to take hold with 75% obscuration as incoming shortwave radiation from the sun is significantly reduced. Read more about that in my previous July post HERE if you haven’t already. Remember, however, that even with 99% obscuration, the sun will still be too bright and therefore too dangerous too look at directly without certified eclipse glasses. Direct viewing of the sun for multiple minutes can blind you, any amount can cause eye injury!

Seattle
Seattle, WA. My home city! 92% Obscuration.
Portland
Portland, OR. 99% Obscuration. So close to totality, yet so far!
San Francisco
San Francisco, CA. 75.5% Obscuration.
Denver
Denver, CO. 92% Obscuration.
Brookings
Brookings, SD. The location of my undergraduate alma mater South Dakota State University. 89% Obscuration.
Minneapolis
Minneapolis, MN. My Mom and much of my extended family lives here. They’ll take in the show. 83% Obscuration.
Dallas
Dallas, TX. 75% Obscuration.
Atlanta
Atlanta, GA. 97% Obscuration.
DC
Washington, DC. 81% Obscuration.
Jacksonville
Jacksonville, FL. 90.5% Obscuration.

Additional eclipse info for this post (such as max eclipse time) is courtesy of Xavier Jubier’s 2017 Total Eclipse Interactive Map.

Is it a Heat Wave or a BBQ Pit? Fires Add Smoke to the Misery

It was VERY smoky in the Northwest Wednesday unfortunately because of major fires in the Interior US and Canada.

Satellite image of Washington State showing abundant smoke over much of Puget Sound and the Strait of Juan de Fuca Wednesday.
Photo from Seattle’s Lake Washington of the sunset view Wednesday evening through the thick smoke haze produced from Canadian fires. (Photo by NWS Seattle on Twitter)

BELOW were the highs Wednesday for select cities. Southwest WA and Western OR are being particularly hit hard by this heat wave. Interior Western WA and Puget Sound were actually sparred some of the worst of the heat today by the smoke; it was thick enough to act as a cloud to dampen the radiation and limit warming in places such as Seattle. It remains to be seen if that will be the case Thursday. If not, the hottest day if the heat may very well be Thursday for Western WA (and about the same for Western OR). This, along with an Air Quality Alert in effect for much of Western WA/OR means those in the area will need to not only be careful with strenuous activity to avoid heat-related illnesses, but also avoid breathing problems, if sensitive to such smoke particulates.

(record highs in red)

WASHINGTON

Seattle (National Weather Service Office): 88

Seattle (International Airport): 91 – Old Record 89 (2009). Special Note: Seattle also shattered its daily record for warmest minimum temperature with a morning low of 69 (old record was 61 set back in 2015) and it ranks as the 2nd warmest daily minimum temperature on record.

Olympia: 91

Hoquiam: 89 – Old Record 81 (1993)

Vancouver: 102

Quillayute (North WA Coast): 98 – Old Record 89 (1993). Special Note: This was likely caused by easterly downslope winds; easterly surface winds flowing along the higher hilly terrain descends down the slopes resulting in “adiabatic heating” (compression heating from increasing pressure on the air molecules as the flow drops in elevation). This hot air blows into town and shoots the temperature up fast. This process occurs throughout the region and is the reason why it is typically a “dry heat” in Western WA/OR during heat waves. The heated air becomes dry, with little moisture added to it.

OREGON

Astoria: 93 – Old Record 88 (1939)

Portland (International Airport): 103 – Old Record 96 (1986)

Troutdale (East Portland Metro): 105 – Old Record 99 (1995)

Hillsboro: 105 – Old Record 99 (1939)

Salem: 107 – Old Record 102 (1939)

Eugene: 102 – Old Record 99 (1939)

Medford: 112 – Old Record 105 (1993)

Klamath Falls: 99 – Old Record 94 (1977)

As you see, for Oregon, there was a major theme in the records for Wednesday’s climate stations. It was the hottest day many of these locations had seen on this date since 1939.

Please be safe if you live in this region the next couple of days. Drink PLENTY of water, take breaks from the heat as necessary, use fans if you don’t have air conditioning (common problem in this region, I lived there without air conditioning and the summers statistically are generally getting warmer because of anthropogenic climate change…), and again, like me, I have asthma; if you don’t need to do anything strenuous outside DON’T! Just drive instead of walk or just stay inside, cool and relax. The slightly cooler weather (still above normal, however) starts Friday.