New Warming Event Coming to the Arctic This Week into Next Week

Another anomalous warming event will be underway this week into next week in the Arctic, potentially impacting the Arctic Ocean sea ice. Basin average air temperature anomalies exceeding +3-4 C (~5.5-7 F) relative to pre-industrial/anthropogenic warming which began in the 18th and 19th centuries (the baseline for these maps is very recent…1981-2010, with an acceleration in global warming occurring just during that time). The Arctic has been warming much faster than the globe as a whole (twice as fast overall, 3-4 times faster in the interior Arctic). The Arctic had its warmest winter on record in 2017-18 with what were effectively “heat wave” events generated by either huge upper-atmospheric ridges of high pressure from a very high amplitude (very wavy) jet stream producing areas of intense warming; or “atmospheric rivers” of intense heat and moisture transport via intense ocean storms moving in from the Atlantic and Pacific eroding the sea ice sheet in the middle of winter by warm temperatures, high wave action and even rainfall. The Bering-Chukchi Seas of the far northern Pacific and Arctic Oceans have been the lowest sea ice extent on record, likely going back to the mid-19th century (the earliest records can be reconstructed).
Climate change-related warming is melting sea ice rapidly, exposing more dark-blue ocean during the warm season, warming it and the atmosphere, contributing to further warming. It also has led to a weakening of the jet stream and winter time upper-atmospheric polar vortex which stabilizes the Arctic climate and upper-atmospheric circulation pattern, “vortex splitting” and much increases “waviness” in the jet stream, with increasingly extreme Northern Hemisphere winters (persistent areas of abnormal cold, warmth, with wet or dryness and very wild swings between the two states in some regions with strong mid-latitude cyclones produced by the temperature gradients). I discussed this more in a detailed post related to my personal observations of the effect the wild temperature variability has had on seasonality on the Great Plains.
For the Arctic, this new very abnormal warming period is unusual in that this is the middle of Spring and temperature variability typically decreases somewhat after winter. But the jet stream continues with its very high amplitude or “wavy” pattern. Lots of abnormal warmth across the Northern Hemisphere mid-latitudes, a couple notable cold spots, but now the Arctic will get assaulted by more heat from the warming mid-latitudes.
Mean temperature anomalies for the month of April (1981-2010 baseline).
But this will be May warmth, not the warmth of January or February. The current sea ice extent, which is around the same as 2016 (which ended the year with the second lowest September minimum on record) may begin decreasing at higher rate, particularly as a days long period of abnormal warmth hits the Central Arctic Basin, which has relatively normal sea ice extent, but record low sea ice area (which subtracts areas within the max extent which are free of sea ice). So bringing in more heat is no good. The Arctic may become ice free in the warm season over the next decade and could do so abruptly.
-Below are Global Forecast System model depictions of temperature anomalies (relative to 1981-2010) over the Arctic over the next several days as storms move over the Arctic Ocean from Siberia and the far North Atlantic. The last image is the mean temperature anomaly over the next 7 days.
Here’s what those temperature anomalies actually translate too in actual air temperatures (forecast by the American GFS model). No part of the Arctic Ocean is below zero F, with the large swath above freezing on Sunday (and earlier).
I’ll also note, I saw evidence of this warming event in long-range models mid last week…and noticed it will coincide with the beginning of an extensive period of abnormal heat over Western North America (literally from the western US to portions of Alaska), with cooler than normal conditions over the Great Lakes and eastern Canada, with abnormal heating of Europe as well. Parts of Europe have already had periods of record heat in April, including Germany.
Probability of above or below normal temperatures during the 6-10 day period (top) and 8-14 day period (bottom). Very abnormal warmth likely over much of the Western US/Canada, with high probabilities in parts of Alaska and much of the Great Plains. This will continue drought conditions for the Southwest US.
14-km EPS Global undefined undefined 60
European Ensemble Model’s ensemble mean temperature anomaly forecast for Europe valid 12 UTC May 3rd. Periods of abnormally warm temperatures appear likely across the region between now and next week.

–Meteorologist Nick Humphrey








The Struggle of the Trees in the era of increasing extremes

As the Arctic continues to warm abruptly because of anthropogenic climate change, the jet stream is exhibiting increasingly high amplitude waves later into the Spring growing season. This has been an apparent pattern through recent decades, but has become more pronounced in recent years. You can learn more about the research of Arctic amplification and the jet stream HERE (Dr. Jennifer Francis) and a more real-time analysis at the time HERE (January 2018; Paul Beckwith). Climate change is becoming abrupt enough, its changes on weather, long-term climate patterns and biology can be seen on yearly to seasonal timescales, where before, changes were over decades. So fast, scientific research can barely keep up and every story has “[faster, bigger, worse, more, etc] than expected”. Been the dizzying mantra of late-2017 into 2018 actually. It’s been rough on early agricultural activities in North America and Europe and it’s also been hard on trees trying to get started on first leaf growth.

Here in Lincoln, NE, the trees the week of April 24th have been struggling to get started with leaf growth. Lilacs are running 16-20 days behind first leaves because it has simply been too cold. We’ve had a few more warm days, recently, but yesterday and today…more chill.


Here’s a photo of my son from this time a year ago. Notice the trees.


Here’s from a walk I took on Monday.




Seeing so many leaf-less trees with only some trying to bud has left me with a weird spooky feeling going for walks. And on Monday, walking down the street for thirty blocks (longest walk I’ve done in awhile) was actually hot because of the lack of shade from any leaves. And if you want to know just what stresses these trees have been through, it’s not just about persistent chill over the course of weeks. Very extreme temperature variability as well.

-April 13th. High temperature 82 F after the passage of a strong warm front associated with the powerful midlatitude cyclone which produced blizzard conditions across the Northern Plains and severe weather in the Deep South that week/weekend.


April 14th. Twenty-four hours later. Non-diurnal temperature drop from April 13th’s high to 32 F following the passage of a powerful cold front. This was the most extreme temperature change I’ve ever experienced at the same location (and this photo is from the same parking lot as above, looking in the opposite direction). I’ve lived in Seattle, WA, Lincoln, NE and Brookings, SD. 50 degree F temperature drop. From early-June to early-February weather conditions.


Other locations, such as in Oklahoma experienced temperature changes last week of 50-60+ degrees in 10 hours (near freezing to around 100 degrees)!!

More persistent warming and less temperature variability is expected this weekend into next week. It may finally start to feel like Spring where I am. Severe weather looks possible to impact the Southern Plains next Tuesday and Wednesday. One oddity of note are no tornadoes reported so far in Nebraska, Kansas, or Oklahoma in 2018. Nebraska typically averages (1991-2010) six tornadoes during the January-April period, with Kansas and Oklahoma averaging 17 tornadoes. But so far…zero for all three states. Nebraska has been too cold and Kansas and Oklahoma have either been too cold and dry with occasional extreme heat (by April standards…again, 90s to  near 100 in the arid drought areas). Extreme to exceptional drought conditions with little rain (and obviously few thunderstorms) have been plaguing the Southern Plains for months. Some storms in May may decrease in intensity of the drought mildly, but very destructive drought conditions for agriculture and hydrology will continue across the Southern Plains and Southwest US. Hoping it will not spread north into Nebraska, but abnormally warm conditions are expected across the southern half of the Plains this summer. Harsh on the plants and crops going from long cold to a long, hot summer. Not to mention more monster wildfires and dust storms. Oklahoma suffered unbelievable wildfires last week.

Wildfires which were ongoing the afternoon of April 17th in SE Colorado, Western Oklahoma, and the Texas Panhandle.
A dust storm captured by satellite over drought-stricken eastern Colorado and western Kansas the afternoon of April 17th.

Check out this extensive (of what at the time was live) video on April 17th of the wildfires in Western OK as they were being chased by KFOR (Oklahoma City) reporters Val and Amy Castor. It’s 3 hrs worth of video, but it’s a Facebook video, easy to fast-forward through and you can see how bad the fires were as they happened.


As mentioned, severe weather may escalate on the Southern Plains (at least Oklahoma and North Texas) next week. Nebraska has been fairly quiet on the severe storm front, but with the clmatological peak months coming (May/June), there will likely be an escalation of activity. Still remains how much more activity there will actually be. While one needs wave action in the polar jet stream to stimulate the movement of warm-moist air from the Gulf of Mexico and vertical wind shear needed for rotating thunderstorms, very pronounced troughs right over the Plains with large ridging extending into Western Canada can mean cool air intrusions to the east and much of the severe weather and heavier rainfall restricted to the southeastern Plains and Southeast as has been the case much of the winter. The now weakening La Nina pattern of the El-Nino Southern Oscillation has been partly to blame for this (as well as other randomly oscillating “teleconnection” patterns”). However, in addition, the intense climate change-induced Arctic heatwaves in this winter’s polar night (climatologically extreme heat, record low ice extents, ‘atmospheric rivers’ of heat and moisture and ocean storms in the Arctic Ocean) caused the wintertime stratospheric polar vortex maintaining the circulation around the Arctic to split. This has become increasingly consistent and more intense in its effect on the Arctic and mid-latitudes the past few winters. This produced very wavy jet stream patterns and areas of abnormally very cold conditions over Europe and the Central US as well as the repeated nor’easter pattern offshore the East Coast in March.

-Splitting and migration of the winter polar vortex in the stratosphere (10 millibar pressure surface, so lines are lines of equal height…above 33,000 ft in the mid-latitudes generally).


This slideshow requires JavaScript.

There are signs in the long-range ensemble models that a highly amplified high pressure ridge build over Western North America late next week into early the following week, providing persistent abnormal heat and of course dry conditions. This would consistent with a pronounced positive phase of the Pacific-North American Pattern (PNA) which features abnormally high mid-atmospheric pressures and surface temperatures over western North America. Such a pattern would also decrease severe storm and rainfall potential on much of the Plains during the second week of May. While severe storms are never a positive for safety, the rainfall from convection is always a plus for keeping drought conditions at bay and the northern Plains are in need of regular rainfall as many places not in drought are still suffering precipitation deficits on the month and/or year. If Arctic sea ice retreats rapidly this melt season (and we’re within years of sea ice disappearing in the warm season), this may promote very amplified upper-level high pressure systems this summer as the low albedo (reflectivity) of exposed dark ocean warms the lower atmospheric column, causing thermal expansion and causing any upper-level high pressure systems overhead to respond with greater poleward amplification and strengthening. This could mean very anomalous heat and dry conditions in the summer which persist. This possibility seems focused on the West, although unusually high heat and continued extensive drought may impact the Southern Plains, depending on how the pattern regime sets up. Very important for agriculture this season which I’ll be watching. California, in particular, seems to be progressing into the climate change-induced “weather whiplash” pattern of extreme drought-rainfall, which will only worsen in the coming years. Intensifying drought this summer and the possible return of El Nino later this fall (still up in the air on that) could cause more of this. Lots to keep track of this year.

—Meteorologist Nick Humphrey

If you want to know what to know what an “extreme weather day” is…look to today.

Today/tomorrow’s mid-latitude cyclone on the Great Plains and Midwest will be a powerful one and one which will provide something for everyone. Blizzards, wind, severe storms, flash flooding, fire…pick your poison, Nature will provide.

In places like Minneapolis and much of Nebraska, this storm threatens to be a historic late-season April heavy snow or blizzard event. In the southern Midwest and South, it threatens heavy rain, flooding and a tornado outbreak. On the southern Plains, strong winds and arid conditions, could further yesterday’s extreme fire behavior. Stay safe out there folks!

A reminder, I will be interviewed on the internet-based program Environmental Coffeehouse at 9 pm EDT/6 pm PDT tonight! A livestream will be available on their public FB page (so you should be able to see it regardless of whether you have a FB page or not). I will discuss abrupt climate change and increasing extreme weather events and how current events (ocean heatwaves, changing jet stream, etc) connect to our rapidly changing climate.

The beast of an extratropical cyclone over the Great Plains today.

Progression of the Great Plains/Midwest Cyclone Friday-Saturday.

Probability of at least 4 inches of snow during the 24 hr period.

Moderate Risk of severe thunderstorms (Level 4 out of 5) over Central and Southwest Arkansas and extreme northwest Louisiana and small portion of East Texas. Multiple tornadoes possible in the region, with isolated strong tornadoes. Damaging winds and very large hail also possible across a larger region from Iowa southward.

Moderate Risk (Level 4 out of 5) of Flash Flooding across much of central and southern Arkansas into far northern Louisiana based on possible 1 to 3 inch rainfall rates.

Extremely Critical Fire Risk (3 out of 3) from southern and Southwest New Mexico into West and North Texas and and western Oklahoma. Conditions exist for extreme fire behavior. Threat is being enhanced by winds associated with today’s cyclone.
If you’re wondering why all this is happening…VERY amplified…or in other words…very wavy jet stream pattern bringing extremely cold air (by April standards) down from from Canada to meet with up with extreme warm air (again by April standards) up from the south. Temps in 20s and 30s to the north with a high of 101 in Western Oklahoma yesterday to the south. Right now Lincoln, NE (where I am) is hitting 80 degrees for the first time this year. Tomorrow, Lincoln will peak in the mid-30s with falling temperatures!

Massive long wave trough moving over the High Plains from the intermountain West of the US. The trough dips as far south as extreme northern Mexico.
The front end of this trough caused the development of the surface cyclone over Nebraska, intensifying deep moisture movement from the Gulf of Mexico (which, by the way, as a moisture source region, is running well above normal to start the year) and as and providing the deep vertical wind shear (rapidly increasing wind speeds with height) need to generate sustained severe thunderstorms. A recipe for a multi-threat mid-latitude frontal system. And it will not stop anytime soon. Saturday night, the threat will spread eastward, where a significant ice storm event may be possible for portions of upstate New York. In fact, Saturday afternoon, there may be much of Pennsylvania in the 70s while much of Upstate New York may be in the 20s! Incredible temperature contrasts for such a relatively higher latitude location.

NAM-WRF 3-km undefined undefined 32
One model depiction (North American Model) show significant temperature contrasts over relatively short distances along a warm front near the PA-NY border Saturday Afternoon. NAM is a colder solution and there are disagreements on where freezing rain line may end up, but any major freezing rain this late in the season in Upstate New York will be quite unusual.

—Meteorologist Nick Humphrey


What’s “Normal”? A Confusing But Important Concept in Climate Change

One thing I notice with human uncertainty and understanding of climate change is our memories are quite short. We don’t always remember how things have changed in the places we have lived in our relatively short lifetimes on this Earth.

Sometimes perspectives from the past help us out.

You might remember in my previous post I discussed a rather random exchange I witnessed between a Mom and adult daughter in a coffee shop where I live, effectively about how the winter climate has changed in Nebraska over the decades. The daughter says “these wild swings (in temperature) are normal”. And the Mom basically says “Not so fast!”…”I remember when it used to be more consistently cold and snowy all winter long”. Basically back in the day there wouldn’t be low 70s in February.

So what’s “normal?”

It’s a strange concept, if you think about it, but an important one. As a meteorologist (who aren’t climatologists), we use “normal” as a moving target. The previous 30 calendar years as the standard for “normal”. So it’s 2018, so we compare what’s happening today or this week or this month thus far to the previous average for the 1981-2010 time period. During the previous decade, we used 1971-2000, the previous decade before that, 1961-1990, etc. But when your “normal” is shifting with time, it’s under the assumption that the climate of your region is relatively stable with natural variability. But it is not any longer. Anthropogenic climate change being produced by industrial civilization is strongly dominating our planet in timescales of years to decades, which means, moving the “target” to some degree actually masks just show significant global warming is changing the climate of a given area (and of course the planet as a whole).

Without data or communication across generations, the current pace climate change (which is still nearly 170 times faster the past 50 years than the previous 10,000 years) can still go unnoticed by the current living generations of people who haven’t noticed or experienced the weather of the “past climate”. Here are some rather stark examples-

I decided to take a look at climate data from the National Climate Data Center for the city of San Diego. I gathered temperature data from San Diego International Airport for the period 1998-2017 and from the San Diego Weather Bureau (the ancestor to the modern National Weather Service) for the period 1890-1909. The most significant symptom of climate change is the shift of the weather to more extreme conditions.  Extremes which never occurred previously, but also known extremes which become much higher in occurrence. In this case I looked at the occurrence of low temperatures at or below 41 degrees F (5 C) and the occurrence of high temperatures at or above 86 degrees F (30 C). The results were…stunning.


High temperatures at/above 86 F: 62 (Highest temperature in period: 100 in 1909).

Low temperatures at/below 41 F: 206 


High temperatures at/above 86 F: 158 (highest temperature in period: 101 in 2012/2016).

Low temperatures at/below 41 F: 28

So what’s normal? If you account for the fact that climate change has been underway since the late 19th century (and before that), occurrences of high temperatures at/above 86 F are running 96 days above normal, while occurrences of low temperatures at/below 41 F are running 178 days below normal. If you were born in the 80s or 90s in San Diego might not even realize your city used to be a lot cooler place. And I do mean A LOT cooler, even if you have actually notice it has warmed more abruptly since you were younger.

I did this same “instant study” for my home city of Seattle some months ago. I don’t have the numbers on me any longer, but it was for shorter time frames (1896-1905) and (2008-2017) looking at high temperatures at or above 90 degrees F. Less than a dozen 90 degree days during the early era vs. nearly *60* in the most recent era, as well as the all-time record high for Seattle of 103 in 2009. Nearly 60 days at or above 90 degrees in just one decade! I don’t remember the exact values for the low temperatures (at or below 32) but there was a notable drop in the number of below freezing temperatures compared to the past. But even going back to my childhood…born in 1984 and a “child of the 90s”. I remember significantly cool, wet periods in the summers, 90 degree temperatures being possible, but rare. When Seattle had its first 100 degree temperature on record in 1994, it was my first experience with triple digit heat in my life and it was absolutely awful. The 2009 heat wave (my last full summer living in the city) was equally roasting with no air conditioning in my parents apartment. In a climate where such heat is rare, many buildings don’t have air conditioning. You use fans and block your (open) windows from the relentless sun with whatever you can. Builders didn’t plan for the summer heat of climate change. And now I look at the 2010s and see more roasting hot summers in the Northwest, raging fires in Western Canada, ashfall in Seattle from those fires. Changing times for my home region.

Photo of a Canadian fire smoke filled Seattle sky from summer 2017. (National Weather Service – Seattle, WA).

Continuing beyond the data, stories from the past can give us a glimpse into previous climate regimes. Yesterday, I was discussing with my friend and Florida author Vanessa Blakeslee about how climate has changed via a humanities perspective. She discussed with me the mid-1930s novel “Cross Creek” by author Marjorie Kinnan Rawlings. She lived in rural north-central Florida and in the novel, the timing of the summer rains are mentioned and “long, cool winters” are reminisced…temperature and precipitation patterns which Vanessa told me are typically very much different today compared to more than 80 years ago.

So what’s normal? What allows humanity the resources (fertile soil, water availability) to sustain agriculture and feed a population, from which towns and cities and economies can grow and develop. The past 10,000 years of a Holocene epoch has witnessed climate stability which has allowed humanity to know when the rains will come, when the rivers will flood, when the dry seasons happen, when to expect the snows, etc. Variability, yes, the occasional extreme sure. But you KNEW the pattern.

Projected rise in global temperature of at least 4 degrees C/8 degrees F (relative to mid-20th century) during the 21st century relative to the past 10,000 years.

But now we’re leaving that behind. There’s no “new normal” in the “Anthropocene”, there’s only a continuous and accelerating shift to more extreme conditions until climate change stops. It only stops when the planet is back in energy balance given the amount of energy its greenhouse gasses are forcing it to retain. And given what humanity has already done to the atmosphere and the continuous acceleration of changes in the climate system, our planet still has much more to go through to get to that actual “new normal”. But it will be likely full of catastrophic impacts for humanity and already so for many species.

High Amplitude Jet Stream Pattern To Lead to Extremely Abnormal Temps for Central/Eastern US; “Blow Torch” Heat to Arctic.

The US will be a land of extremes as a high amplitude jet stream…the story of this winter continues to impact the US as very abnormally cold temperatures impact the Central US and (later) the Great Lakes region, with very abnormal heat spreading northward into the Eastern third of the country mid-week. Sunday, much of the Great Plains were experiencing temperatures 20-25 degrees F above normal (~10-12 degrees C). As the week progresses, the jet stream amplitude over North America will intensify and bring highs of 30 degrees F (15+ C) or greater above normal mid-week to the Ohio and Tennessee Valleys into the mid-Atlantic and New England states. This means mid-Spring highs on the East Coast and a resumption of well below freezing temps over the Central and Northern Plains.

This slideshow requires JavaScript.

In addition to the abnormal temperatures, another major story will be potentially heavy rainfall across a wide swath of the Midwest and Deep South ahead of the accompanying cold front which will push eastward mid-week. Abundant moisture from the Gulf of Mexico will aid in the generation of rainfall, some of which will help short term drought conditions, but could also produce flash flooding.

Moderate risk of flash flooding over portion of Texas, Oklahoma, much of Arkansas and southern Missouri Tuesday.
Tuesday evening forecast surface map showing widespread moderate to heavy rainfall likely from Texas to Michigan.

The Arctic Ocean has been experiencing an extraordinarily warm winter with consistent high heat to the region (relative to regional norms). As a result, sea ice has been suffering severely as the combination of high amplitude high pressure ridging and ocean cyclones push heat, wave action and wind into the sea ice sheet, along with very abnormal sea surface temperature right up against the sea ice (9-18 degrees F/5-10 degrees C above normal). Sea ice extent is currently running at the lowest on record in the history of human civilization, rapid melting already in progress in the northern Bering Sea, and 2017 annual sea ice volume was the lowest on record. The current max extent this season occurred on February 6th. The current earliest maximum peak extent is February 25th in 2015. The current record year for record minimum peak extent is 2017…2018 is currently beating that record and has the 2nd lowest year-to-date volume as well.


The sea ice is showing some signs of refreezing after its early February peak. However, more extreme heat is to come as more storms from both the Bering Sea and the North Atlantic advance heat and moisture into the Arctic Ocean this week. One storm will move over far Eastern Siberia and into the Chukchi Sea on Tuesday. Wednesday, another, stronger storm will approach Greenland, moving over the Canadian Archipelago Thursday, slowly shifting toward the Beaufort Sea Friday.


Note the last two sea level pressure images for 2/23 and 2/24. Not only the strength of the cyclone (in blue) but the tightly packed lines of equal pressure (isobars) between the low pressure system and the strong high pressure system over the Barents Sea, north of Scandinavia. These tightly packed isobars represent a very strong pressure gradient which will result in very strong southerly wind gusts (near hurricane-force) and intense wave action striking the sea ice sheet of the Arctic Ocean mid to late week. This in combination with the very warm, moist air moving into the region will make for a “blow torch” of heat from the Atlantic, eroding the cold conditions of the Arctic, stunting the freeze season further. This will likely lead to further ceasing or recession of sea ice as well.

GFS forecast high temperature for Thursday, showing above freezing temperatures penetrating into the deep Arctic. This may continue into Friday. Today through Tuesday will feature near or above freezing temperatures moving out of the Bering Sea into the southern Chukchi Sea as well.

I’ve been tracking the Arctic all season and there has been a shocking level of persistent warmth in the region with 2-3 degrees C above normal temps (for the region) being quite common many more extreme day higher than that. The Arctic Ocean basin may experience, as a region, anomalous temperatures of an incredible 6-8 degrees C above normal Tuesday-Saturday. This is relative to the 1981-2010 average. However, as climate change is abruptly warming the Arctic region, leading to rapid sea ice loss compared to the past, relative to the late 19th and mid 18th centuries (in the early era of human generated climate change), the anomalies are likely 0.7 or 1  degree C higher than that, respectively.

GFS Anomalous temperature forecasts for the Arctic region valid 00 UTC Feb 23rd. Extreme heat by regional standards over the Arctic for much of the week.

The implications for the collapse of sea ice are quite serious. The sea ice sheet regulates the jet stream by making the Arctic region permanently cold across a wide area. As long it it remains permanent with only modest seasonal melt, it can behave much like a continental ice sheet would behave on the atmosphere (like in Antarctica). The jet stream exists because the Arctic atmosphere is cold throughout the vertical column. The strong temperature gradient with the mid-latitudes is what makes it exist. But with abrupt warming of the Arctic caused by the collapsing ice sheet (which feeds back on accelerating such a collapse), this weakens the jet stream and has been causing it to become wavier with increasingly more extreme and frequent high amplitude patterns (which feedback and melt the Arctic more). Such research has been conducted by scientists such as Dr. Jennifer Francis of Rutgers University and others, showing the jet stream slowing and becoming higher in amplitude since the 1960s. Such abrupt warming also leads events such as “sudden stratospheric warming” and “splitting” of the polar vortex, supporting Arctic blasts to the south and abundant heat transport to the Arctic.

If the ice sheet collapses completely (no more in summer, low to little meaningful extent in the polar night), you get even more abrupt warming of the sea surface from below and above through collapse of the ocean thermocline (persistently cold water “cap” atop somewhat warmer water) and air temperature inversion (warmer air atop cold surface air) as well as from the much reduced albedo (white, reflective surface). The warming atmospheric column with height further reduces the temperature gradient with the mid-latitudes, weakening the jet further and causing more extreme “wave action”, greater blocking patterns as you get these big waves and little eastward progression of systems and the polar jet actually retreats farther north. This can dramatically shift precipitation patterns northward could cause much hotter, drier conditions in the mid-latitudes. It’s been a major concern for a long time in in climate change science, but a process thought to be of concern in the “high emissions” scenarios of the mid to late 21st century as increasing aridity across the mid-latitudes would destroy forests and not allow crops to be grown where they are currently grown because of increasing extreme heat (or storms). So this would have impacts not only in the Arctic, but also in the mid-latitudes. Unfortunately, a recent phrase has been increasing use the past few years. “Faster than expected”. Some prominent researchers openly admit an ice-free Arctic may be possible before 2020. See also HERE.

I’ll have more on the situation in the Arctic this week as well as the heavy rainfall in the US. Also, keep an eye on Tropical Storm Gita approaching New Zealand to start the week!

–Meteorologist Nick Humphrey

Wild Ride – More Cold Intrusions into North America/Europe, Powerful Warm Storm Headed for Arctic Ocean Monday

This winter has been a fascinating one to say the least. Wild oscillations between very abnormally warm and very abnormally cold while other places are are just consistently very warm. Or perhaps just very dry. Much of this has been thanks to the current La Nina pattern in place over the Tropical Pacific. The atmospheric pattern leading to abnormally cooler waters over the eastern tropical region also lead to the promotion of strong high pressure systems over the Central North Pacific with unusually higher amplitude jet streams. This favors a polar jet aiming for the Pacific Northwest, northern tier and into the northeastern third of the country while the Southwest and Sunbelt see drier conditions.


Conditions of at least “Abnormally Dry” cover over 67% of the Continental US. It is the most coverage in abnormally dry conditions since February 5, 2013. It is, interestingly, the 49th greatest extent of at least Abnormally Dry conditions on record out of 944 recorded weekly updates (over 18 years now). Conditions of at least D1 “Moderate Drought” coverage over 38% of the Continental US. It is the most coverage in D1 conditions since April 22, 2014.

Of note with this pattern regime has been the, at times, extreme nature of the jet stream amplitudes. They have driven very warm temperatures into the Arctic with record low sea ice across the Arctic Ocean, the warmest December on record across the state of Alaska, and record high temperatures in portions of the Southwest US in January with the aforementioned persistent drying and intensifying drought concerns. 

Meanwhile, significant Arctic intrusions have been impacting the US, particularly in January and more appear likely in February as “teleconnections”…patterns in global circulation which give clues toward a general weather regime for a region of the world…show signs of further intense extreme jet stream amplitudes with very strong upper-level high pressure systems blocking storm tracks over the north Pacific and Bering Sea, which downstream will mean a cross polar flow in the upper atmosphere of very cold air upper troughs and surface Arctic fronts and high pressure systems over northern Plains/Midwest into the Northeast US. The Deep South should escape as warmer air from the subtropics attempts to advance north and may keep the Arctic air at bay. Europe looks to also have periods of similar cold (and interior Siberia of course! Check out the incredible cold they had last month).

Temperature Anomalies in the US (Sunday, Thursday) and in Europe (Monday). Widespread temps below freezing during the day in parts of central and Eastern US and central and eastern Europe during these cold periods. Very persistent warmth with highs in the 60-80s in the Southwest US.


Powerful Arctic Ocean Storm Sunday-Tuesday

While the mid-latitudes get hit with Arctic cold, the Arctic is being pounded by significant amounts of mid-latitude heat. And now the computer models are pointing towards a major North Atlantic storm developing early this weekend, moving over Greenland and then into the middle of the Arctic Ocean Sunday night-Monday. This storm will be very powerful…as strong as any classic North Atlantic ocean winter storm, and will bring significant amounts of high winds, battering waves and high “heat” to the Arctic. How warm? Perhaps as warm as 50-60 degrees F above normal temperatures over much of the Arctic Ocean. This will mean highs near or just above freezing up to the North Pole!

Temperature forecast by the Global Forecast System model for noon CST Monday showing near or above freezing temperature penetrating deep into the interior Arctic as a result of intense warm air advection.
A significant sector of the Arctic Ocean will have air temperatures over 40 degrees F above normal (or higher) during the day Monday.

This storm is forecast to initially form southwest of the tip of Greenland and east of Quebec Friday and will beginning moving over Greenland Saturday. Sunday, the system will begin to impact the Arctic, with warm and moisture transport from the North Atlantic (all the way from the Azores!) increasing abruptly late-Sunday. By Monday morning, models indicate waves moving up the Fram Strait toward the Arctic may be as high as 30 ft in strong south-southwesterly flow. Over the sea ice sheet, the low pressure system will be intense as it emerges from Greenland…possibly sub-960 millibars with widespread wind gusts of up to hurricane-force likely over much of the interior Arctic Ocean east and south of the low on the Atlantic side.

GFS depiction of the powerful low pressure system over the central Arctic Ocean on Monday. The European model has a similar strength low. Winds up to hurricane-force wind gusts and battering waves are likely conditions for the tenuous sea ice.
Forecast significant wave heights for early Monday with the worst of it in the Fram Strait.

Why this storm is so significant is because the Arctic sea ice is continuing to undergo collapse because of anthropogenic climate change. If the Arctic climate warms to the point that it simply cannot support sea ice in the warm season, with the Arctic Ocean warming as a result of very low albedo (reflectivity to visible light which would otherwise limit warming) compared to white ice (or latent heat of melting/freezing, instead of heat going into warming the ocean directly), this will have dramatic effects on not only regional climate but global climate (I can go into greater details in this in the comments or provide resources). Generally this was something expected much later in the future, but may occur earlier than expected, although it is difficult to predict when exactly this will occur as it would be nonlinear and abrupt. However, as mentioned, ice volume and extent for ice are running at record or near record lows across the Arctic Basin. Some of these effects on albedo and heating have already begun to be felt over the past several years on the marginal seas which are beginning to become increasingly ice free during the warm season (Chukchi Sea, Beaufort Sea, Eastern Siberian Sea), but it’s important to not have the interior Arctic Ocean lose significant ice. Particularly in the winter, but it has been struggling just to freeze this winter! For more on recent sea ice developments see these videos by Paul Beckwith (M.Sc, PhD candidate; HERE and HERE).

In the meantime, while we have year to year variability…various teleconnection patterns, anthropogenic forcing (CO2, other gasses) is the most dominant regime on our climate and so even while I must emphasize weather is not climate…I must also emphasize that climate is a statistical distribution of weather events; and so extreme weather events which are increasing in frequency and magnitude are a sign of our climate shifting to more extreme conditions and in sensitive places (particularly cold climates like the Arctic), those shifts are incredibly noticeable.

–Meteorologist Nick Humphrey