High Amplitude Jet Stream Pattern To Lead to Extremely Abnormal Temps for Central/Eastern US; “Blow Torch” Heat to Arctic.

The US will be a land of extremes as a high amplitude jet stream…the story of this winter continues to impact the US as very abnormally cold temperatures impact the Central US and (later) the Great Lakes region, with very abnormal heat spreading northward into the Eastern third of the country mid-week. Sunday, much of the Great Plains were experiencing temperatures 20-25 degrees F above normal (~10-12 degrees C). As the week progresses, the jet stream amplitude over North America will intensify and bring highs of 30 degrees F (15+ C) or greater above normal mid-week to the Ohio and Tennessee Valleys into the mid-Atlantic and New England states. This means mid-Spring highs on the East Coast and a resumption of well below freezing temps over the Central and Northern Plains.

This slideshow requires JavaScript.

In addition to the abnormal temperatures, another major story will be potentially heavy rainfall across a wide swath of the Midwest and Deep South ahead of the accompanying cold front which will push eastward mid-week. Abundant moisture from the Gulf of Mexico will aid in the generation of rainfall, some of which will help short term drought conditions, but could also produce flash flooding.

Moderate risk of flash flooding over portion of Texas, Oklahoma, much of Arkansas and southern Missouri Tuesday.
Tuesday evening forecast surface map showing widespread moderate to heavy rainfall likely from Texas to Michigan.

The Arctic Ocean has been experiencing an extraordinarily warm winter with consistent high heat to the region (relative to regional norms). As a result, sea ice has been suffering severely as the combination of high amplitude high pressure ridging and ocean cyclones push heat, wave action and wind into the sea ice sheet, along with very abnormal sea surface temperature right up against the sea ice (9-18 degrees F/5-10 degrees C above normal). Sea ice extent is currently running at the lowest on record in the history of human civilization, rapid melting already in progress in the northern Bering Sea, and 2017 annual sea ice volume was the lowest on record. The current max extent this season occurred on February 6th. The current earliest maximum peak extent is February 25th in 2015. The current record year for record minimum peak extent is 2017…2018 is currently beating that record and has the 2nd lowest year-to-date volume as well.


The sea ice is showing some signs of refreezing after its early February peak. However, more extreme heat is to come as more storms from both the Bering Sea and the North Atlantic advance heat and moisture into the Arctic Ocean this week. One storm will move over far Eastern Siberia and into the Chukchi Sea on Tuesday. Wednesday, another, stronger storm will approach Greenland, moving over the Canadian Archipelago Thursday, slowly shifting toward the Beaufort Sea Friday.


Note the last two sea level pressure images for 2/23 and 2/24. Not only the strength of the cyclone (in blue) but the tightly packed lines of equal pressure (isobars) between the low pressure system and the strong high pressure system over the Barents Sea, north of Scandinavia. These tightly packed isobars represent a very strong pressure gradient which will result in very strong southerly wind gusts (near hurricane-force) and intense wave action striking the sea ice sheet of the Arctic Ocean mid to late week. This in combination with the very warm, moist air moving into the region will make for a “blow torch” of heat from the Atlantic, eroding the cold conditions of the Arctic, stunting the freeze season further. This will likely lead to further ceasing or recession of sea ice as well.

GFS forecast high temperature for Thursday, showing above freezing temperatures penetrating into the deep Arctic. This may continue into Friday. Today through Tuesday will feature near or above freezing temperatures moving out of the Bering Sea into the southern Chukchi Sea as well.

I’ve been tracking the Arctic all season and there has been a shocking level of persistent warmth in the region with 2-3 degrees C above normal temps (for the region) being quite common many more extreme day higher than that. The Arctic Ocean basin may experience, as a region, anomalous temperatures of an incredible 6-8 degrees C above normal Tuesday-Saturday. This is relative to the 1981-2010 average. However, as climate change is abruptly warming the Arctic region, leading to rapid sea ice loss compared to the past, relative to the late 19th and mid 18th centuries (in the early era of human generated climate change), the anomalies are likely 0.7 or 1  degree C higher than that, respectively.

GFS Anomalous temperature forecasts for the Arctic region valid 00 UTC Feb 23rd. Extreme heat by regional standards over the Arctic for much of the week.

The implications for the collapse of sea ice are quite serious. The sea ice sheet regulates the jet stream by making the Arctic region permanently cold across a wide area. As long it it remains permanent with only modest seasonal melt, it can behave much like a continental ice sheet would behave on the atmosphere (like in Antarctica). The jet stream exists because the Arctic atmosphere is cold throughout the vertical column. The strong temperature gradient with the mid-latitudes is what makes it exist. But with abrupt warming of the Arctic caused by the collapsing ice sheet (which feeds back on accelerating such a collapse), this weakens the jet stream and has been causing it to become wavier with increasingly more extreme and frequent high amplitude patterns (which feedback and melt the Arctic more). Such research has been conducted by scientists such as Dr. Jennifer Francis of Rutgers University and others, showing the jet stream slowing and becoming higher in amplitude since the 1960s. Such abrupt warming also leads events such as “sudden stratospheric warming” and “splitting” of the polar vortex, supporting Arctic blasts to the south and abundant heat transport to the Arctic.

If the ice sheet collapses completely (no more in summer, low to little meaningful extent in the polar night), you get even more abrupt warming of the sea surface from below and above through collapse of the ocean thermocline (persistently cold water “cap” atop somewhat warmer water) and air temperature inversion (warmer air atop cold surface air) as well as from the much reduced albedo (white, reflective surface). The warming atmospheric column with height further reduces the temperature gradient with the mid-latitudes, weakening the jet further and causing more extreme “wave action”, greater blocking patterns as you get these big waves and little eastward progression of systems and the polar jet actually retreats farther north. This can dramatically shift precipitation patterns northward could cause much hotter, drier conditions in the mid-latitudes. It’s been a major concern for a long time in in climate change science, but a process thought to be of concern in the “high emissions” scenarios of the mid to late 21st century as increasing aridity across the mid-latitudes would destroy forests and not allow crops to be grown where they are currently grown because of increasing extreme heat (or storms). So this would have impacts not only in the Arctic, but also in the mid-latitudes. Unfortunately, a recent phrase has been increasing use the past few years. “Faster than expected”. Some prominent researchers openly admit an ice-free Arctic may be possible before 2020. See also HERE.

I’ll have more on the situation in the Arctic this week as well as the heavy rainfall in the US. Also, keep an eye on Tropical Storm Gita approaching New Zealand to start the week!

–Meteorologist Nick Humphrey


Cyclone Gita headed for close passage of Tonga

Cyclone Gita in the South Pacific is a powerful Category 4-equivalent tropical cyclone on the Saffir-Simpson Scale (as of the time of this post). Maximum sustained winds analyzed by the US Joint Typhoon Warning Center are up to 130 mph with gusts to 155 mph. Gita is moving westward and is expected to pass near or over Tonga around 12 UTC Monday (6 am CST or 1 am Tuesday local time). The storm is expected to be at least a powerful Category 4 storm. There is moderate wind shear (increasing winds with height effecting the cyclone and limiting more rapid intensification. However, with water temperatures along the path of 28-29 degrees C (82-84 degrees F) and well-organized structure, Gita will be a potentially catastrophic storm if its eye wall moves over the main island. Gita will also produce very heavy rain (perhaps 6-12 inches) which will lead to flooding. A state of emergency has been declared in the island nation.

Gita (9P) moving westward toward Tonga. Visible satellite image at 04:52 UTC Monday.
03 UTC Monday Advisory on Cyclone Gita by the Joint Typhoon Warning Center.

After 24 hours, Gita is expected to gradually weaken as sea surface temperatures cool and vertical wind shear increases as the system begins to turn to the southwest into higher latitudes. However, Gita is expected to remain a hurricane-force storm through the end of the week.

New Zealand will need to keep an eye on the remnants of Gita as the dying circulation an moisture plume may curve back southeastward in the mid-latitude westerlies. While, the forecast will certainly change somewhat…such as the position of the upper-level trough of low pressure southwest of New Zealand which will cause the system to curve back towards the country beginning Sunday…any remnant system may lead to locally heavy rainfall for both the North and South Islands early to mid-week next week.

European Model accumulated total precipitation forecast ending 00 UTC February 22nd. The remnants of Gita are forecast to curve back southeast toward New Zealand early next week delivering very rainfall.


–Meteorologist Nick Humphrey


Effect of Sun-Mon Arctic Ocean Storm on Sea Ice

You may remember I posted last Friday about the major North Atlantic storm which was expected to move into the Arctic Ocean Sunday and Monday producing hurricane-force winds, 30 ft+ waves and temperatures over 40 degrees F above normal (near or even above freezing in places). Well that storm advanced through the Arctic and now noticeable effects can be seen (via satellite analysis) on sea ice concentration (amount of ice vs. open water in a given area) and on sea ice sheet growth and resulting extent.

North Atlantic Surface Analysis valid at 06 UTC February 5th (midnight CST) showing the 958 millibar low pressure system off shore northeast Greenland entering the Arctic Ocean from the North Atlantic basin. (US National Weather Service)
Global Forecast System model analysis valid 12 UTC February 5th (6 am CST). This shows the very strong sustained winds and (by Arctic standards north of 80N) extremely warm temperatures during the height of the storm. This was thanks to very strong warm air advection from the Atlantic Ocean. The system had a sub-tropical connection with heat and moisture originating from the subtropical western Atlantic. Average temperatures in many places should be -30 to -15 F (-34 to -26 C). (earth.nullschool.net)

Included are two images of the sea ice concentration…one I saved from the February 3rd, another just posted for February 6th. Lighter blues are for 90-95% concentration, with yellows and reds being for 75-90%.

This slideshow requires JavaScript.

Extent growth basically stopped between February 3-6 (near 13,300,000 sq km for four days).

2018 year-to-date extent (currently at record lows) vs 2016 extent (previous daily record lows for this time of year) and the 1980s average. Sea ice extent and volume collapse is underway in the Arctic Ocean because of Anthropogenic Climate Change caused by abrupt warming in the Arctic (notable since the 1980s, accelerating since the 2000s). 

More very above normal temperatures will hit the Arctic this weekend as a powerful blocking high pressure system over the Pacific (sound familiar…) raises temps once again across Alaska and allows storm tracks to head for the Bering Strait and Chukchi Sea once again. Meanwhile, the Atlantic side will continue to remain “open” with another storm also moving into the region this weekend. No storm appears to be nearly as powerful as the Sunday-Monday event, but the litany of systems bringing at least some wind, wave action and temps not far below the freezing point of salt water is no good for the Arctic.

Temperature anomaly (degrees above or below average) forecast by the GFS model for the Arctic region valid 18 UTC February 10th (noon CST). Normal is based on 1981-2010 baseline. To approximate the major effect of anthropogenic climate change since the end of the 18th century add +0.9 degrees C (K).
GFS maximum temperature forecast valid 18 UTC February 10th (noon CST). Very warm air temperatures on both the Atlantic and Pacific entrances to the Arctic Ocean.

Arctic sea ice is extremely important for everything from Arctic regional ecology, marine biology to effects on overall warming of the Arctic Ocean and surrounding land areas (and permafrost). There is also evidence that the rapid warming of the Arctic because of anthropogenic climate change is altering the polar jet stream circulation which may be leading to an increased frequency and magnitude of extreme weather events. 

Sea ice thickness and thickness anomalies in January 2018. (Zach Labe)

–Meteorologist Nick Humphrey




Wild Ride – More Cold Intrusions into North America/Europe, Powerful Warm Storm Headed for Arctic Ocean Monday

This winter has been a fascinating one to say the least. Wild oscillations between very abnormally warm and very abnormally cold while other places are are just consistently very warm. Or perhaps just very dry. Much of this has been thanks to the current La Nina pattern in place over the Tropical Pacific. The atmospheric pattern leading to abnormally cooler waters over the eastern tropical region also lead to the promotion of strong high pressure systems over the Central North Pacific with unusually higher amplitude jet streams. This favors a polar jet aiming for the Pacific Northwest, northern tier and into the northeastern third of the country while the Southwest and Sunbelt see drier conditions.


Conditions of at least “Abnormally Dry” cover over 67% of the Continental US. It is the most coverage in abnormally dry conditions since February 5, 2013. It is, interestingly, the 49th greatest extent of at least Abnormally Dry conditions on record out of 944 recorded weekly updates (over 18 years now). Conditions of at least D1 “Moderate Drought” coverage over 38% of the Continental US. It is the most coverage in D1 conditions since April 22, 2014.

Of note with this pattern regime has been the, at times, extreme nature of the jet stream amplitudes. They have driven very warm temperatures into the Arctic with record low sea ice across the Arctic Ocean, the warmest December on record across the state of Alaska, and record high temperatures in portions of the Southwest US in January with the aforementioned persistent drying and intensifying drought concerns. 

Meanwhile, significant Arctic intrusions have been impacting the US, particularly in January and more appear likely in February as “teleconnections”…patterns in global circulation which give clues toward a general weather regime for a region of the world…show signs of further intense extreme jet stream amplitudes with very strong upper-level high pressure systems blocking storm tracks over the north Pacific and Bering Sea, which downstream will mean a cross polar flow in the upper atmosphere of very cold air upper troughs and surface Arctic fronts and high pressure systems over northern Plains/Midwest into the Northeast US. The Deep South should escape as warmer air from the subtropics attempts to advance north and may keep the Arctic air at bay. Europe looks to also have periods of similar cold (and interior Siberia of course! Check out the incredible cold they had last month).

Temperature Anomalies in the US (Sunday, Thursday) and in Europe (Monday). Widespread temps below freezing during the day in parts of central and Eastern US and central and eastern Europe during these cold periods. Very persistent warmth with highs in the 60-80s in the Southwest US.


Powerful Arctic Ocean Storm Sunday-Tuesday

While the mid-latitudes get hit with Arctic cold, the Arctic is being pounded by significant amounts of mid-latitude heat. And now the computer models are pointing towards a major North Atlantic storm developing early this weekend, moving over Greenland and then into the middle of the Arctic Ocean Sunday night-Monday. This storm will be very powerful…as strong as any classic North Atlantic ocean winter storm, and will bring significant amounts of high winds, battering waves and high “heat” to the Arctic. How warm? Perhaps as warm as 50-60 degrees F above normal temperatures over much of the Arctic Ocean. This will mean highs near or just above freezing up to the North Pole!

Temperature forecast by the Global Forecast System model for noon CST Monday showing near or above freezing temperature penetrating deep into the interior Arctic as a result of intense warm air advection.
A significant sector of the Arctic Ocean will have air temperatures over 40 degrees F above normal (or higher) during the day Monday.

This storm is forecast to initially form southwest of the tip of Greenland and east of Quebec Friday and will beginning moving over Greenland Saturday. Sunday, the system will begin to impact the Arctic, with warm and moisture transport from the North Atlantic (all the way from the Azores!) increasing abruptly late-Sunday. By Monday morning, models indicate waves moving up the Fram Strait toward the Arctic may be as high as 30 ft in strong south-southwesterly flow. Over the sea ice sheet, the low pressure system will be intense as it emerges from Greenland…possibly sub-960 millibars with widespread wind gusts of up to hurricane-force likely over much of the interior Arctic Ocean east and south of the low on the Atlantic side.

GFS depiction of the powerful low pressure system over the central Arctic Ocean on Monday. The European model has a similar strength low. Winds up to hurricane-force wind gusts and battering waves are likely conditions for the tenuous sea ice.
Forecast significant wave heights for early Monday with the worst of it in the Fram Strait.

Why this storm is so significant is because the Arctic sea ice is continuing to undergo collapse because of anthropogenic climate change. If the Arctic climate warms to the point that it simply cannot support sea ice in the warm season, with the Arctic Ocean warming as a result of very low albedo (reflectivity to visible light which would otherwise limit warming) compared to white ice (or latent heat of melting/freezing, instead of heat going into warming the ocean directly), this will have dramatic effects on not only regional climate but global climate (I can go into greater details in this in the comments or provide resources). Generally this was something expected much later in the future, but may occur earlier than expected, although it is difficult to predict when exactly this will occur as it would be nonlinear and abrupt. However, as mentioned, ice volume and extent for ice are running at record or near record lows across the Arctic Basin. Some of these effects on albedo and heating have already begun to be felt over the past several years on the marginal seas which are beginning to become increasingly ice free during the warm season (Chukchi Sea, Beaufort Sea, Eastern Siberian Sea), but it’s important to not have the interior Arctic Ocean lose significant ice. Particularly in the winter, but it has been struggling just to freeze this winter! For more on recent sea ice developments see these videos by Paul Beckwith (M.Sc, PhD candidate; HERE and HERE).

In the meantime, while we have year to year variability…various teleconnection patterns, anthropogenic forcing (CO2, other gasses) is the most dominant regime on our climate and so even while I must emphasize weather is not climate…I must also emphasize that climate is a statistical distribution of weather events; and so extreme weather events which are increasing in frequency and magnitude are a sign of our climate shifting to more extreme conditions and in sensitive places (particularly cold climates like the Arctic), those shifts are incredibly noticeable.

–Meteorologist Nick Humphrey


Abrupt Climate Change Tipping Elements

While anthropogenic climate change is generally discussed in the context of gradual change (perhaps, “gradual” by standards of human lifetimes…still extremely fast by geological timescales…), there are tipping elements in the climate system which have the potential to cause very abrupt and extremely rapid shifts in climate states on regional and (more importantly) global scales. Tipping points are still somewhat controversial in the science of climate change, but there is precedence for it in the paleoclimate record; from the ice age cycles to some of the most infamous extinction-level events in Earth’s history where species simply had no chance to adapt.

I’ve discussed the concept of abrupt climate change previously and suggested that we are currently in a period of abrupt climate change. “Abrupt” defined as events occurring within less than a normal human lifetime which normally do not do so. Many scientists have studied the potential in the present or past of abrupt climate change (or quasi-“runaway” global warming which is abrupt) including Dr. James White, Dr. Jennifer Francis, Dr. Peter Wadhams, Dr. David Wasdell, and many others. Much research has looked at abrupt climate change as a function between a forcing mechanism on a system and a “breaking system” (a negative feedback) which stops the system from reaching a tipping point. However, if the forcing overcomes the breaking and forces it over the tipping point, there is the abrupt (temporally rapid and structurally changed) shift to a new climate state vastly different from the previous state (see excellent discussion on the topic by Dr. David Wasdell…a climate scientist who’s done peer review work for the Intergovernmental Panel on Climate Change of the UN).

Tipping Elements. (Postdam Institute for Climate Impact Research).

Our current more abrupt climate change…which one may argue began in the 1980s with a more rapid rise in global air and sea surface temperatures, decrease in sea ice extent/volume, ocean acidification, land glacier retreat, among other climate change signals (noted by both the IPCC as well as the US in recent climate reports)…appears to have been caused by our rapidly increasing emissions of greenhouse gasses, including carbon dioxide in the atmosphere since the 1960s. CO2 concentration was around 315 parts per million molecules of air in 1960 (compared to 285 ppm at the end of the 19th century). We’re already near 410 ppm in 2017…twice an increase in concentration in nearly the same amount of time. Methane, a short-term (150+ times more powerful as carbon dioxide within a few years), but extremely powerful greenhouse gas has also rapidly increased because of both human and natural sources.


However, as anthropogenic climate change continues to evolve, assuming no *significant* human intervention (specifically removal of carbon dioxide and cooling of the Arctic), may lead to further tipping points being reached within the climate system which may accelerate change further. Changes which can happen over the course of just years. These more specific “sub-system” tipping points are of particular interest to some of the previous researchers mentioned. So let’s discuss a couple of interest…

Tipping Point #1: Arctic Sea Ice Sheet Collapse

Personal opinion here…I firmly believe of all the abrupt climate change tipping points, this one is likely the most imminent. Arctic sea ice has been rapidly decreasing in extent and thickness (and therefore, volume) since the 1980s. Numerical climate models in the past have attempted to predict the collapse of sea ice (what some refer too as the effective “ice free” Arctic in the warm season…roughly 10% of the Arctic Ocean Basin without ice or less). Previous predictions have called for dates such as the 2080s and more recently, the 2040s. Now there are scientists such as Dr. Paul Beckwith and Dr. Peter Wadhams and others openly giving a likelihood that the first “ice free” or “blue ocean” event will occur by or before 2020! 2017 witnessed the record low annual Arctic sea ice volume, caused by very thin tenuous ice. Where widespread, thick ice used to exist in the Arctic, tenuous thin ice only remains, ready to be destroyed by random storms and influxes of heat from the Atlantic and Pacific…a process which is already happening.


What is important about this tipping point? If most of the ice disappears from the Arctic Ocean, albedo (reflectivity) in the northern hemisphere will be significantly reduced, replacing white ice with very dark ocean, warming the Arctic Ocean column and warming and moistening the atmosphere (also clouding it, retaining heat in the polar night, making new sea ice difficult to form). Of course, this more rapid heating of the Arctic will more rapidly raise the overall average temperature of Earth as well. Note…there has not been an “ice-free” Arctic over in over 3 million years! It will also have have implications on the jet stream which depends on temperature gradients between the mid-latitudes and the Arctic for it’s strength and progression of waves around the globe – it would become much weaker, shift farther north and exhibit much greater amplitude waves with stagnant, extreme weather (see HERE and HERE).

This tipping point could set off other issues such as prolonged heat waves and droughts, leading to other tipping events such as forest diebacks (and then wildfires) and methane releases in the high tundra and methane clathrates from subsea permafrost in Arctic continental ice shelves (more on clathrates). This would release more carbon into the atmosphere. Abrupt changes in precipitation distribution (dryness or heavy precipitation) and extreme heat would pose threats to agricultural production which is very sensitive to individual weather events, let alone the climate stability which we’ve been accustomed too for the past 10,000 years since the end of the last glacial period.

Tipping Point #2: Equatorial Super Rotation

Another rather daunting tipping point is actually a common feature of several planets in our own solar system. It is called equatorial super-rotation. None of the previous scientists have dealt with this topic, but it is of interest to me as a meteorologist and is actually not a current feature of Earth’s atmosphere. It is a phenomena in which the atmosphere around the tropics and subtropics actually spins faster than the planet’s rotational velocity. This super rotational velocities occur on the terrestrial planet Venus and the Jovian planets (such as Jupiter and Saturn).

How would this occur on Earth from anthropogenic climate change and what would be the impacts on climate? Well, typically, the Earth’s tropical circulatory pattern involves structures known as Hadley Cells which features rising motion near the Equator and sinking motion in the subtropical regions. Air at the surface then flows equatorial-ward towards a convergence zone (the Intertropical Convergence Zone or Monsoon Trough) with the Coriolis force turning the air flow toward the right/left in the northern/southern Hemisphere, generating the easterly trade winds. The Hadley Cell expands and migrates north and south depending on the seasons between the two hemispheres.


With climate change however, increasingly extreme surface heating in the tropics is theorized to possibly lead to a situation where a single Hadley Cell develops, becoming extremely powerful and expansive. This would lead to the center of it straddling the equator with a strong upper-level equatorial westerly jet (the super-rotational flow).  Significant areas experiencing hyper-aridity would exist over much of the mid-latitudes as far less moisture is transported from the tropics and high precipitation regions would be found much further poleward than found in the current climate regime. This tipping point in modeling isn’t expected until late century, but again, given the rate at which observed changes in the climate system are evolving relative to the limitations of modeling, it is not truly known when such a tipping point could actually be initiated.

Human Societal Tipping Points…

Of course, with anthropomorphic climate change, one of the biggest issues is humanity’s ability to deal with increasingly rapid and extreme changes and harms. Humans depend need food, water, and shelter to thrive and when repeated meteorological (hurricanes, tornadoes, floods, etc) and climatological (long-term agricultural and hydrological droughts) disasters strike, society can take very serious hits. Much of the world depends on agriculture from the US and China, for example. Freshwater resources around the world are under increasing stress from overuse by increasingly growing populations. More and more people are crowding into cities which will be under the influence of urban heat islands which may deal with hotter temperatures as the climate warms.

Projected decadal Palmer Drought Index based on local norms during course of 21st century. Timeline based on “high-emissions” scenario of IPCC, which does not account for certain tipping elements, only human emissions. Climate Change expected to cause hyper-aridity (for US, equivalent to 1930s Dust Bowl conditions) throughout US/Europe, South Africa and Amazon without significant human intervention, well beyond current measures. Note wetter conditions in high latitudes.

The ability of humanity to deal with the changes ahead will be by far the most significant challenge in the coming years ahead.

–Meteorologist Nick Humphrey


Multiple Arctic Air Surges Expected Into Next Week

After periods of very abnormally warm weather, surges of very cold air from the Arctic will be barreling out of Canada starting Thursday into next week.

This slideshow requires JavaScript.

European model model depiction of morning temperatures over the US and southern Canada at 6 am CST Tuesday 12/26. May be colder with winds.
These cold surges are a result of a highly amplified jet stream which has been shifting around North America for the past few weeks with a strong ridge over the Western US and trough over the US. However, the ridge is retreating over the Eastern Pacific and intensifying into Alaska, heating up the Arctic and putting southern Canada and the US in the ice box.

US Global Forecast System model forecast for 6 pm CST Thursday 12/21 showing highly amplified wave pattern of atmosphere at 500 millibar pressure surface (approximately 18,000 ft altitude).

“HOT” Arctic. Temperatures in Barrow, AK running over 30 degrees F above normal on Thursday (normal high is -3 F). Normal low is -15 F. That abnormal warmth will become less intense, but persist into next week.
The Storm Prediction Center does have a marginal risk of severe weather ahead of this week’s major frontal system over Southeast TX Friday. The risk appears to be for a isolated severe thunderstorm wind gusts over 60 mph and low risks of tornadoes.


Here in the land of the corn? We should peak in the upper-30s tomorrow morning and then have falling temperatures and increasing winds during the afternoon with freezing drizzle with increasing breezy conditions out of the northwest. Not much snow accumulation expected here, although it could get slick from some of the freezing precipitation. Anyone else in the middle of the country, be careful as the cold air moves in if you’re on the roads!

Quick update on the Thomas Fire in California:

As of this post, the fire burned 272,000 acres…the 2nd largest in California state history (within less than 1500 acres of the state record). It has killed two people, including a firefighter. It is 60% contained. It began December 4th.

No significant rainfall is expected is expected in Southern California through the end of the month based on computer models. The Eastern Pacific ridge of high pressure seems to have a dominant grip on the region unfortunately. A combination of a La Nina pattern and climate change-induced extremely low Arctic sea ice and warm Arctic causing an incredibly amplified jet stream which tends to produce “stuck” and “stale” patterns.

European model forecast accumulated precipitation through 12/30 showing the possibility of little to no measurable rain or snowfall in much of the Southwest US. Been little to be had in that region in December.
We can only wait and see if the lack of rain and snow forecast in the models in fact verifies for the Southwest US.

Happy first day of (astronomical) winter!

–Meteorologist Nick Humphrey


Major Pattern Change for North America and Arctic Next Week.

A major weather pattern shift will be occur next week for North America into the Arctic as the jet stream…which already has been largely higher in amplitude and experiencing some blocking with little eastward progression of long-waves in the upper-atmosphere, will becoming extremely amplified (north-south) next week bringing very warm air up into Alaska, Yukon and the Arctic Ocean and a modified Arctic air mass from Nunavut and the Northwest Territories of Canada into the central US. Let’s take a look at things.

The current pattern dominating North America has been strong ridge of high pressure over the Western US or Eastern Pacific with a prominent trough over the eastern US with some fluctuation in the wave pattern east or west, but not much significant change, except in the center of the country which has seen more significant swings between these two states. The east, including even the Southeast saw significant snow. The west has seen abnormal warmth with record fires in California. Currently the ridge of upper-atmosphere ridge is forecast by US and European models to build to an extremely high amplitude the end of next week north over portions of Alaska and Yukon and into the margins of the Arctic Ocean. This as a very intense trough is forced south over the US.

European model forecast for the wave pattern of the mid-level atmosphere valid 6 pm CST 12/23.
This extreme amplification will drive an Arctic surface air high pressure system out of the Northwest Territories with very cold air this week, with this air mass advancing into the US beginning Thursday into this weekend. Meanwhile stormier conditions will moving from the Bering Sea into the Chukchi Sea driving up temperatures in the far north. And California with all the fires? Remains abnormally warm and dry.

Temperatures the afternoon of Christmas Eve (European Model forecast).

Greatest signal for low to no precipitation the next 10 days is south-central to southern CA into much of AZ and NV.
The Arctic:

As I spoke about in a previous post, the Arctic is having its second warmest year on record and lowest annual sea ice volume on record as climate change continues to abnormally warm the Arctic. The highly amplified wave pattern is much a product of the current weak La Nina pattern. However, the intensity of the amplification and resulting amplified warming of the Arctic is also a function of the long-term global warming regime dominating the polar region and causing record warmth and reductions in sea ice. I noticed this amplified wave pattern will have interesting impacts on the Arctic weather pattern and possibly the tenuous sea ice beginning next week.

Right now, a prominent surface high pressure region…associated with the Beaufort Gyre…is over the Arctic Ocean north of Alaska and eastern Siberia. By the middle of next week, this gyre will weaken as strong low pressure systems approach the Arctic from both the Bering Sea and the far North Atlantic.

Prominent high pressure of the Beaufort Gyre over the sea ice of the Arctic Ocean.

European Model depiction of low pressure system advancing into the Arctic Ocean from the Bering Sea on Christmas Eve. This may be the strongest in a series of lows (2-3) beginning late week. Stormy conditions will also impact areas near Svalbard (islands just east of northeast Greenland) late-week and weekend.
The Gyre is vulnerable because of the areas of open water and tenuous sea ice which remains over the Chukchi Sea…record low extent for this time of year. The ice being cold creates the surface high pressure system and clockwise circulation. But last year, this gyre collapsed because of slow sea ice growth allowing for storms with warm, moist air to move into the Arctic and further slowed sea ice growth. It appears this may be forecast to happen again during the tail end of this month.

European Model forecast surface temperatures showing well above normal temps shifting northward late week into Christmas Eve over the Arctic Ocean north Svalbard and the Chukchi Sea. While exact values will change, general pattern appears likely.
Depending on the strength of the low pressure systems, not only will the tenuous sea ice in the Arctic…widespread areas 1.5 meters or less in thickness (less than a meter in the Chukchi Sea)…deal with more warm air temperatures limiting sea ice growth, but also wave action which may destroy the ice, particularly from the Pacific side as cyclones are expected to move across the Arctic from the Pacific. We’ll see how much impact those storms have and how intense they are. If the upper-level wave pattern is as amplified as forecast by models 5-8 days out (no reason to think otherwise as he reach the point of good reliability for the upper-atmosphere), it’s a good set up for strong low pressure systems to develop in both the North Pacific and North Atlantic. And with the highly amplified blocking high over the Eastern Pacific, storms will be forced to track into Alaska and into the Chukchi and Beaufort Seas and deep Arctic Ocean.

–Meteorologist Nick Humphrey