Major Pattern Change for North America and Arctic Next Week.

A major weather pattern shift will be occur next week for North America into the Arctic as the jet stream…which already has been largely higher in amplitude and experiencing some blocking with little eastward progression of long-waves in the upper-atmosphere, will becoming extremely amplified (north-south) next week bringing very warm air up into Alaska, Yukon and the Arctic Ocean and a modified Arctic air mass from Nunavut and the Northwest Territories of Canada into the central US. Let’s take a look at things.

The current pattern dominating North America has been strong ridge of high pressure over the Western US or Eastern Pacific with a prominent trough over the eastern US with some fluctuation in the wave pattern east or west, but not much significant change, except in the center of the country which has seen more significant swings between these two states. The east, including even the Southeast saw significant snow. The west has seen abnormal warmth with record fires in California. Currently the ridge of upper-atmosphere ridge is forecast by US and European models to build to an extremely high amplitude the end of next week north over portions of Alaska and Yukon and into the margins of the Arctic Ocean. This as a very intense trough is forced south over the US.

us_model-en-087-0_modez_2017121612_180_5436_310
European model forecast for the wave pattern of the mid-level atmosphere valid 6 pm CST 12/23.

This extreme amplification will drive an Arctic surface air high pressure system out of the Northwest Territories with very cold air this week, with this air mass advancing into the US beginning Thursday into this weekend. Meanwhile stormier conditions will moving from the Bering Sea into the Chukchi Sea driving up temperatures in the far north. And California with all the fires? Remains abnormally warm and dry.

us_model-en-087-0_modez_2017121612_204_5436_217
Temperatures the afternoon of Christmas Eve (European Model forecast).
us_model-en-087-0_modez_2017121612_240_5436_220
Greatest signal for low to no precipitation the next 10 days is south-central to southern CA into much of AZ and NV.

The Arctic:

As I spoke about in a previous post, the Arctic is having its second warmest year on record and lowest annual sea ice volume on record as climate change continues to abnormally warm the Arctic. The highly amplified wave pattern is much a product of the current weak La Nina pattern. However, the intensity of the amplification and resulting amplified warming of the Arctic is also a function of the long-term global warming regime dominating the polar region and causing record warmth and reductions in sea ice. I noticed this amplified wave pattern will have interesting impacts on the Arctic weather pattern and possibly the tenuous sea ice beginning next week.

Right now, a prominent surface high pressure region…associated with the Beaufort Gyre…is over the Arctic Ocean north of Alaska and eastern Siberia. By the middle of next week, this gyre will weaken as strong low pressure systems approach the Arctic from both the Bering Sea and the far North Atlantic.

us_model-en-087-0_modez_2017121612_36_15056_149
Prominent high pressure of the Beaufort Gyre over the sea ice of the Arctic Ocean.
us_model-en-087-0_modez_2017121612_204_15056_149
European Model depiction of low pressure system advancing into the Arctic Ocean from the Bering Sea on Christmas Eve. This may be the strongest in a series of lows (2-3) beginning late week. Stormy conditions will also impact areas near Svalbard (islands just east of northeast Greenland) late-week and weekend.

The Gyre is vulnerable because of the areas of open water and tenuous sea ice which remains over the Chukchi Sea…record low extent for this time of year. The ice being cold creates the surface high pressure system and clockwise circulation. But last year, this gyre collapsed because of slow sea ice growth allowing for storms with warm, moist air to move into the Arctic and further slowed sea ice growth. It appears this may be forecast to happen again during the tail end of this month.

us_model-en-087-0_modez_2017121612_204_15056_217
European Model forecast surface temperatures showing well above normal temps shifting northward late week into Christmas Eve over the Arctic Ocean north Svalbard and the Chukchi Sea. While exact values will change, general pattern appears likely.

Depending on the strength of the low pressure systems, not only will the tenuous sea ice in the Arctic…widespread areas 1.5 meters or less in thickness (less than a meter in the Chukchi Sea)…deal with more warm air temperatures limiting sea ice growth, but also wave action which may destroy the ice, particularly from the Pacific side as cyclones are expected to move across the Arctic from the Pacific. We’ll see how much impact those storms have and how intense they are. If the upper-level wave pattern is as amplified as forecast by models 5-8 days out (no reason to think otherwise as he reach the point of good reliability for the upper-atmosphere), it’s a good set up for strong low pressure systems to develop in both the North Pacific and North Atlantic. And with the highly amplified blocking high over the Eastern Pacific, storms will be forced to track into Alaska and into the Chukchi and Beaufort Seas and deep Arctic Ocean.

–Meteorologist Nick Humphrey

If you like what you read and appreciate the time I put into writing on weather and climate topics, feel free to donate with PAYPAL. Every little bit helps a lot! Thank you!

Advertisements

Very above normal temperatures dominating US to end November

Much above normal temperatures are dominating much of the United States right now. This is largely a product of a zonal or progressive jet stream moving along the northern tier states and southern Canada locking colder air over interior Canada and the Arctic (although, I note, the Arctic is seeing much above normal temperatures relative to what they should be seeing as well!).

My area…Eastern Nebraska…has been seeing many days of 60s and even mid-70s, including today. The average temperatures this time of year should be in the low to mid-40s for highs and near 20 for lows. Instead it’s been feeling like it’s around birthday time for me. My birthday is in May.

GFS-025deg_NH-SAT1_T2_anom
Global Forecast System model analysis of surface air temperature anomalies for November 27th. The GFS tends to have a minor warm bias from reality, but it is accurate is showing significant above normal temps over the western and central sections of the United States. The baseline normal period is 1979-2000, prior to the significant amplification of climatic warming in the Arctic (occurring because of anthropogenic global warming).
gfs_namer_048_250_wnd_ht
Global Forecast System model forecast depiction of upper-air wave pattern at 250 millibars (~10,200 meters/33,500 ft) valid Wednesday morning. The jet stream will remain largely over the northern tier and southern Canada this week with above normal temps of varying departures over the US.

As we move into the first week of December, trends point to some dip in the jet stream over the Western US early next week causing below normal temperatures. However, this will also amplify the jet stream over the eastern two-thirds, producing significantly above normal temperatures yet again.

One additional thing of note. Snow cover is virtually non-existent in the contiguous US today (Nov. 27th). Only 4% of the CONUS has snow cover today. Going back to 2003, this is lowest snow cover extent for this particular date. The second and third lowest for Nov. 27th were 8.7% (2009) and 10.2% (2011). The snow cover area extents on Nov. 27th in 2010, 2012-2015 were in the range of 20-35%. 2016 was fairly low at 15.4%. The data is available HERE.

nsm_depth_2017112705_National
Snow depth analysis map for the US and southern Canada for November 27, 2017.

I don’t know date prior to 2003, however it is known that climate change is reducing snow cover extent and depth in the US and the Northern Hemisphere beyond natural variability. The aforementioned trough in the West should increase that extent somewhat next week.

The Realities of Progress on Climate Change Discussed at COP23

I found this discussion forum posted on YouTube with Dr. James Hansen and felt the need to share. Hansen is known as the “father of global warming awareness” since his testimony on the problem before Congress in the late 1980s and frequent contributions in both peer-reviewed literature and as a science communicator to the general public. This talk was posted just today from the latest international climate talks (Conference Of the Parties-23 or “COP-23” in Bonn, Germany) dealing with getting down details behind the Paris Climate Agreement signed the world’s nations in 2015 to try to limit global warming below 2 degrees C (3.6 degrees F) relative to 1750 and preferably below 1.5 C (2.7 F).

Here is the video (by user Nick Breeze who reports on Climate Change issues and interviews scientists…check out his YouTube Channel, good stuff)…audio isn’t the greatest but it is still highly recommended if you care about this important issue.

In this discussion, Hansen pretty much lays out a major problem. With all the talks over the years, nothing significant has been done to significantly reduce emissions of greenhouse gasses into Earth’s atmosphere. He points out something which other notable climate scientists have pointed out: We have run out of time as far as waiting on attempting to prevent “catastrophic warming” as far as impacts (those impacts really pick up intensity past 1.5 degrees C…we are currently around 1.1-1.2 C over the past few years) and while there are efforts to create alternative energy solutions and research carbon dioxide removal from the atmosphere, the only viable way he sees to get nations off of carbon is for govts to force the cost of fossil fuels to reflect the harm it causes to ecological and human health (pollution, climate change, etc). He’s spoken about how this could be done to put much of the money back in the pockets of Americans in the American political context (where the greatest monetary loss would likely be to the rich with a huge carbon footprint). But having the true ecological and human cost of fossil fuels…and not just the benefit in terms of driving the common economic drivers…be added to the cost would allow much greater competitiveness in the energy industry vs. now where fossil fuels are still by far the cheapest energy available for a variety of reasons (relative ease to extract, transport, existing technology vs. building new). And with oil companies influencing govts around the world, it makes it very hard to see realistic change outside of the pledges or changes which seem significant but in the end do little good on a global scale.

Example…current Paris Agreement pledges would cause the global warming to reach at least 3-4 degrees C (5.4-7.2 F) by the last decades of this century. And there are risks of unpredictable “positive feedbacks” (some known, some unknown) such as, severe chronic Arctic sea ice loss in the summer months, mass diebacks of tropical and boreal forests or methane release from (shallow) submerged continental shelf permafrost in the Arctic Ocean which would accelerate global warming even more. Methane…a short-lived but extremely powerful greenhouse gas…has already been observed releasing at increasing rates in the East Siberian Arctic Ocean and Laptev Sea because of increasing ocean warming. There is also simply the possibility that Earth overall is more sensitive to carbon dioxide than originally thought (actual scientific paper HERE).

I made this blog partly for informing people about the realities of climate change as it is ultimately we who must make sound decisions and force our governments to do the same. These conferences and agreements are great (and obviously I disagree with President Trump’s position on the issue), but optics cannot be the only thing which comes out of all these COPs. We must have an evolutionary change in how we conduct business on our only habitable planet. There are means to turn the tide…but the political will (and money) have to be invested in actually doing it.

–Meteorologist Nick Humphrey

Biggest WxClimo Story of 2017…Wildfires.

Fires have been raging across the world this year with unprecedented scope. Major wildfire outbreaks have been notable from tropical rainforests in Africa and South America to the taiga of Canada and Russia. Even Greenland has seen an unusual amount of fire activity on the edge of the ice sheet. This year, Western North America, and the Iberian Peninsula of Europe have been particularly hard hit with life-threatening fires (see HERE, HERE, and HERE). Although fires occur every year with variable impacts, a significant upward trend can be tied to climate change allowing both natural and human activity to ignite and expand the destructive intensity of wildfires.

This video by Climate Central summarizes the impacts of these fires so far this year and their connection of climate change. This recent article by The Observer also summarizes fires around the world and the impacts of climate change.

 

(The featured satellite image above is from October 9, 2017 courtesy of the European Space Agency).

Global Climate Change and its Potential Connection to Hurricane Activity (cited research)

Because of recent North Atlantic Hurricane Season activity…many people have questioned whether hurricanes are becoming stronger and more numerous because of climate change. In the social media universe, I’ve seen many opinionated debates within the general public, as well as meteorologists and perhaps a few sprinkling of climatologist opinions here and there. Not to mention, interesting statements from non-climate scientists. What I have not seen much, however, is any discussion of peer-reviewed research on the topic. There’s so much knowledge being gathered every year by scientists trying to answer important questions about our past, present and future. How climate change will impact regional weather and climates is one of the most important questions because of potential impacts to people, agriculture and natural resources.

I decided to do a (very brief) search of literature on science’s current understanding of climate change as it relates to tropical cyclones. I looked into both the potential connection of global warming to these events in the current climate (attribution), as well as projections for these events based on the “business-as-usual” scenario for carbon dioxide emissions, which is a high emissions scenario and steady increase in CO2 concentration. Research cited are just a sampling of what’s out there and what I looked over. Here are some themes I found interesting (takeaway statements at the end):

Climate models* appear to show a signal toward more intense (Category 4-5 Saffir-Simpson) tropical cyclones overall in the world by the latter half of the 21st century. However, there is also a potential for a downward trend in cyclone numbers in many basins (see #1-4).

The decrease in overall cyclone numbers by the second half of the century is thought to be a product of increasing vertical wind shear over tropical oceans limiting weaker storms. However, many researchers expect there to be a significant upward trend in more intense storms (Category 4-5) as the oceans continue to warm and tropical cyclone formation and track density moves poleward. So formerly less favorable sub-regions of basins may see an overall increase in cyclone activity (with more storms which will be stronger than before in those regions) and in the increasingly less hospitable regions (over the long term), storms which do form when conditions are favorable on short time scales may see cyclones which are also more intense than in years past.

As for historical conditions leading to the present…there does not appear to be a conclusive signature by global warming on tropical cyclone intensity outside of natural variability on a global scale (3-4). However, some regional signals related to frequency changes are being actively studied. 

There is some suggestion (4) based on modeling past climate change to the present time that warming (which would enhance the potential intensity for hurricanes) has been muted by the industrial production of aerosols (particulates like sulfates and nitrates), which actually reflect sunlight from reaching Earth’s surface. However, as warming continues into mid-century, its effect of trapping heat will begin to significantly exceed aerosol cooling effects leading to the more pronounced impacts on cyclone intensity stated earlier (unless CO2 emissions are significantly reduced soon). So while global warming is happening in the background, hurricane potential intensity as we currently witness it is likely still being dominated by natural cycles. (For more on climate change research into tropical cyclones, you can also see this webinar done by climate change researcher Dr. Kerry Emanuel for Climate Central).

With that said, some researchers see signs of a global warming signature associated with recent increased tropical cyclone *frequency* in sub-regions of basins. These include the far eastern portion of the North Atlantic Basin (4), close to the East Asian Coast (5), and a portion of the North-Central Pacific Basin (6). Research is still ongoing on global warming’s past and future influence on activity in individual tropical cyclone basins.

Meanwhile, there is evidence of other impacts related to tropical cyclones (and other significant weather phenomena) and climate change. These include higher rainfall rates (7) and higher storm surge related to sea-level rise from the melting polar ice sheets and thermal expansion of the oceans (8). In addition, there is some scientific evidence that tropical cyclones in recent decades have begun to intensify more rapidly because of increased ocean warming (9). And while not completely clear yet whether it is fully tied to climate change, it is known that the observed North Atlantic Power Dissipation Index (PDI) has increased significantly since the mid-1970s (10; positively correlated to sea surface temperatures) and globally, the strongest tropical cyclones in respective basins have grown stronger since 1981 (Elsner et al, 2008…not included here). Note that scientific critics point out the use of observational data with differences in quality – satellite intensity estimates and reconnaissance flights (or lack of them) – over recent decades could put some uncertainty in these results.

My thoughts? Although inconclusive, possible intensity signals may be a hint of the projected effects of climate change as PDI and high-end cyclone intensity are highly correlated to sea surface temperatures. SSTs are increasing from global warming and this would connect with what climate models suggest of future tropical cyclone activity, if these historical trends are, in fact partially related to climate change.

The Takeaways:

  1. Tropical cyclone intensity at the highest end of the scale appears likely to increase through the 21st century because of climate change, especially if human civilization does not significantly reduce greenhouse gas emissions soon.
  2. While a current climate change signal to intensity is difficult to detect and still a matter of debate, storms in recent decades appear to be intensifying faster, are capable of producing more extreme precipitation events and higher storm surges because of rising sea levels caused by ice sheet melting and thermal ocean expansion. There also appears to be some detectable changes in frequency of storms within individual basins which may locally enhance risk.
  3. Regardless of the exact changes in frequency and intensity of tropical cyclones, the risks to individuals and society because of climate change will increase into the coming decades. It will be important for people and governments to make decisions (beyond greenhouse gas emissions) related to property, coastal land use and emergency management policy to mitigate increasing tropical cyclone hazards, particularly from water (storm surge/inland flooding).

Note: It is of EXTREME importance that those with a desire to communicate climate change issues try to inform our fellow citizens to the best of our ability. Climate change is one of the important issues facing our world (the impact on the global food supply and human health may be actually of greatest importance, but rarely discussed as those aren’t “sexy” topics…). People have their thoughts on the issue based on experiences, politics, religious/spiritual beliefs, etc. However, at the end of the day, we must inform and connect what we know to people’s concerns and allow people to decide as they may. Without censorship (“We can’t discuss climate change right now!”) or nonsensical exaggerations (“So many hurricanes, it’s a new era of superstorms!”). Stay informed (give informed opinions) and tell people why they should care as it relates to their lives. Like everything else we should communicate to the concerns of people. Considering most Americans are now, in fact, concerned about climate change, there’s really NO excuse not to discuss the issue in a serious, informed manner if we have the interest to discuss it at all.


Additional Note: *-Climate models are not weather forecast models. They do not forecast the atmosphere using initial conditions, but take a climate state (for example, our current climate) and adjust “forcings” on the climate system (carbon dioxide emissions for example). The effect of these changes to “boundary conditions” over time are interpreted for land, sea, the cryosphere and (for Earth System models), the biosphere. Global climate is based on thermodynamic and hydrologic balances which will look for equilibrium when changes to a part of the system are applied. (For more on climate models you can see this webinar by Research Meteorologist Keith Dixon of NOAA’s Geophysical Fluid Dynamics Laboratory for Climate Central).

References (links are PDFs):

#1 – Bell et al. (2013)

#2 – Murakami et al. (2011)

#3 – Wang and Wu. (2013)

#4 –  Sobel et al. (2016)

#5 – Cheng-lin et al. (2016)

#6 – Murakami et al. (2015)

#7 – Knutson et al. (2013)

#8 – Jevrejeva et al. (2016)

#9 – Kishtawal et al. (2012)

#10 – Emanual (2005)

—Meteorologist Nick Humphrey

2016 State of the Climate: The Sobering Data

Today The American Meteorological Society, in collaboration with the National Oceanic and Atmospheric Administration released their yearly peer-reviewed “State of the Climate” report detailing the state of the global climate. It is…not positive at all.

You can see the full report HERE. But here are the bullet points:

-The report confirms, via independent datasets that 2016 was the warmest year on record for human observations (most world observations go back to mid-1800s). Not only for Earth’s atmosphere but for the Earth’s oceans.

DG4xSurUMAYE2gJ

 

DG4xFkRUIAIFEJO

-The Earth’s surface averaged 1.06-1.21 degrees C above pre-industrial levels (depending on datasets available). It is the second year in a row the global land and ocean temperature averaged over 1 degree C. The “danger” zone for destructive impacts on human society and ecosystems around the world according to climate scientists is 2 degrees C or higher. Even 1.5 C would begin to have very hazardous impacts.

DG4xpCXUMAIOkxW

-Global carbon dioxide concentration in Earth’s atmosphere (the main greenhouse gas being added by human activity) exceeded 400 part per million on average for the first time ever in human history. Not only that…This is the highest level in Earth’s atmosphere in at least 800,000 years based on data taken from ice cores. For comparison, pre-industrial levels of carbon dioxide concentration was approximately 280 ppm (only 150 yrs ago).

-The increase in the yearly average of carbon dioxide by 3.5 ppm from 2015 to 2016 is the largest increase observed in the 58 year history of observations.

DG4yBxfUMAE1SUj

-2016 featured significant portions of land areas suffering from “extreme heat”…heat above the 90 percentile compared to the 1961-1990 average temperature for the location.

DG4yOcJVoAAOcf9

DG4y7y3VwAAr06L

-2016 was the warmest year on record for the ocean, causing major stresses for ocean ecosystems, including coral reefs. Over 90% of global warming heating goes into the oceans (100+ zetajoules (1 x 10^23 joules) since 1993…it takes ~4 joules of heat to warm 1 gram of water by 1 degree C…it takes A LOT of energy to raise the temperature of water).

DG4zMXSU0AA3aq2

DG4zqJ7VwAEXvfT

-Sea levels are rising nearly everywhere, at different rates. Added water and thermal expansion by the heating of water are both factors. This is the 6th consecutive year of increase.

DG40CUdUMAEwDs1

-Severe drought impacted at least 12% of the planet’s land area each month of 2016 for the first time in history. (Note: The drought conditions in the Amazon Rain Forest in 2015-16 the third “100-year” event since 2005 with previous events in 2005 and 2010).

DG40XUUU0AAdezm

-Arctic sea ice had its lowest winter maximum on record and second lowest summer minimum on record in 2016. The mass of the Greenland Ice Sheet, which has ice up to 110,000 yrs old and has the ability to contribute to up to 7 meters sea-level rise is at a record low value.

DG40kOCVwAAj0fO

-2016 was the 37th consecutive year of worldwide Alpine glacial retreat.

-Across the Northern Hemisphere, snow cover was the 4th least extensive in the 47-yr record.

-Record high temperatures at 20 meters were observed at depth in permafrost observatories in Alaska and Canada.

-The United States had the 2nd warmest year on record in 2016 and the 20th consecutive warmer than normal year.


It’s interesting that this came out today because I was actually just beginning to write the draft to the next in the series of WxClimoEd “Understanding Global Climate Change“. But then this blew up my Twitter LOL. This pretty much gives me a good addition to what I would’ve discussed anyways. So let’s do just that…

It appears to me that we have crossed in the 2015-2017 period some crucial thresholds in the “era” of anthropogenic climate change. We are continuing to pump more carbon dioxide into the atmosphere than Earth can remove through natural processes. We are essentially heavily polluting our atmosphere with CO2. Earth itself appears to have become a “1 degree C” world in terms of average temperature and major impacts expected to develop as a result. In addition, while our atmosphere is heating up, our oceans are also taking in incredible amounts of energy, slowly heating up and it’s quite literally cooking our marine life, all while the oceans undergo acidification from the CO2 they are taking in which is also causing harm to ecosystems. Coral reefs are facing this head on along with hundreds of thousands of species with depend on them. This is discussed is in the documentary Chasing Coral, which I reviewed HERE.

This year…2017…continues to see further signs of major problems which were predicted to be likely results of climate change.

-The first six months of 2017 (January-June) was the second warmest on record behind 2016. It is also the second warmest on record for the United States.

8_8_17_Andrea_CC_Alaskarecords_1050_788_s_c1_c_cDGgXuS2U0AEGmx-

-July saw record heat for the Western US and Alaska including record July or all-time record maximum monthly temps and sea ice within range of the Arctic Ocean coast. Other cities such as Reno, NV and Salt Lake City had their hottest July’s ever. Miami set an all-time record hottest month ever. Death Valley, CA took its wild heat to another level with an average July temperature of 107.4 degrees F making it the hottest month ever recorded in the United States historical record.

Figure2

-Arctic sea ice is headed for (yet again) one of its lowest extents in the observational record.

8_7_17_Brian_MarkuseGreenlandFire_720_506_s_c1_c_c

-Boreal forests continue to burn at an unprecedented rate not seen in the past 10,000 yrs. Most notably significant fires have broken out in Canada and in the peat of the Arctic on the border of the ice sheet on Greenland.

I’ll write more about the IMPACTS of climate change…estimates of global and regional effects that I intended on writing about hopefully later this week in my regular post series. But in short…we really have no time to lose on this. Governments and citizens MUST do what they can…from individual efforts to industry…to get carbon emissions down. The more carbon dioxide goes into the atmosphere and higher temperatures rise, the greater the uncertainty as far as resulting phenomena such as climate feedbacks which could either hinder or enhance climate change, the latter of course worsening the situation faster. We as humans, we live our lives and we really have no idea how fragile how our world really is. We must realize how destructive a force we are so we can be constructive to ourselves and our world instead.

Heat wave hits Pacific NW this week; A look at Climate Change Impacts on Extreme Heat

If you live in Western Washington and like roasting near 100 degree temperatures, you are and will be getting your wish the next 72 hrs. As powerful upper-atmospheric ridge of high pressure is establishing itself over the West Coast of the US, the combination of clear skies and subsiding (downward moving as opposed to upward rising) air under this high pressure system – subsiding air warms as it sinks – is leading to incredible heat over the interior areas of Western WA/OR and Northern CA.

GFSNW_sfc_temp_054
Forecast surface temperatures at 5 pm PDT Thursday. Upper-90s near Seattle around 100 in Southwest WA, mid-100s in the Willamette Valley and and Medford, OR area. Eastern WA also hit hard with high heat. (Global Forecast System 11 am PDT Tuesday model run).
gfs_namer_048_500_vort_ht
Forecast upper-air map showing the atmospheric wave pattern on the 500 millibar pressure surface (approximately 18,000-18,500 ft over the US) on 11 am Thursday. I added text to show the locations of the ridge relative to its influence on the “extreme heat” (where it is producing 20-25 degree above normal temperatures) over the Pacific Northwest. (Global Forecast System computer 11 am Tuesday model run).

Extreme heat warnings have been issued for virtually ALL OF Washington State, Western Oregon, and much of Northern California.

Shown below are the average high temperatures for today (August 1st) for selected cities in Western WA/OR followed by forecast highs for today-Thurs or Fri. The forecast highs in red are highs which would break the record high for that day.

Seattle, WA-

Tues, August 1st Average High Temperature: 77

Forecast Highs (Tues-Fri): 87, 94, 98, 95

Olympia, WA (state capitol)-

Tues, August 1st Average High Temperature: 79

Forecast Highs (Tues-Fri): 92, 98, 103, 95

Portland, OR-

Tues, August 1st Average High Temperature: 82

Forecast High (Tues-Thurs): 99, 105, 105 (All-time record high is 107 from 1965/1981)

Salem, OR (state Capitol)-

Tues, August 1st Average High Temperature: 84

Forecast High (Tues-Thurs): 99, 106, 105 (All-time record high is 108 from ’27, ’41, ’81)

According to the 5 pm PDT observation, Salem has reached 100 degrees, exceeding their forecast temp and tying the daily record of 100 degrees for today.

Eugene, OR-

Tues, August 1st Average High Temperature: 84

Forecast High (Tues-Thurs): 99, 106, 103 (All-time record high is 108 from ’81)

Medford, OR- (edited at 10:40 pm CDT Tuesday to add this city)

Tues, August 1st Average High Temperature: 93

Forecast High (Tues-Thurs): 108, 114, 111 (All-time record high is 115 from ’46)

It’s very possible that for a portion of the Willamette Valley, especially the Central Willamette Valley, Wednesday could be one of the most intense heat days on record!

The worst of the heat for Western WA and Western OR is expected to end after Friday more seasonable to reasonable above normal temperatures this weekend.


One of the most significant impacts of human-induced Global Climate Change are the impact on heat waves. As the average temperature of Earth warms, many local temperature patterns are shifting toward temperatures which are “hot” to “extremely hot” relative to average temperatures in the mid-20th century (typically defined by their standard deviation from the mean temperature for the local area).

18033307_10212742805792049_5293494484345621705_n
These charts, based on data by NASA climate scientist James Hansen shows the strong deviation in in the bell curve for 2005-2015 local Northern Hemisphere temperatures relative to the same distribution of temperatures in 1951-1980. The trend has been to many more “extremely hot” temperatures and “hot” temperatures have become the new normal in the Northern Hemisphere on average. See full NY Times story HERE

This shift has had implications for impacts on everything from drought to human health such as heat-related illness and vector-borne illnesses. It will continue to do so as carbon dioxide levels continue to climb. The levels of carbon dioxide in the atmosphere reached a record in observed human history of ~410 parts per million in May of this year, the highest level in at least several million years (and humanity is pumping it into the atmosphere at a rate unseen in the past 65 million years).

At this time, global warming has reached approximately 1 degree C (nearly 2 degrees F) since the early modern Industrial Era (the 1880s). It is statistically known that heat waves, droughts and also heavy precipitation events (because of additional moisture added to a warmer atmosphere) are being impacted directly by climate change.