Major Pattern Change for North America and Arctic Next Week.

A major weather pattern shift will be occur next week for North America into the Arctic as the jet stream…which already has been largely higher in amplitude and experiencing some blocking with little eastward progression of long-waves in the upper-atmosphere, will becoming extremely amplified (north-south) next week bringing very warm air up into Alaska, Yukon and the Arctic Ocean and a modified Arctic air mass from Nunavut and the Northwest Territories of Canada into the central US. Let’s take a look at things.

The current pattern dominating North America has been strong ridge of high pressure over the Western US or Eastern Pacific with a prominent trough over the eastern US with some fluctuation in the wave pattern east or west, but not much significant change, except in the center of the country which has seen more significant swings between these two states. The east, including even the Southeast saw significant snow. The west has seen abnormal warmth with record fires in California. Currently the ridge of upper-atmosphere ridge is forecast by US and European models to build to an extremely high amplitude the end of next week north over portions of Alaska and Yukon and into the margins of the Arctic Ocean. This as a very intense trough is forced south over the US.

us_model-en-087-0_modez_2017121612_180_5436_310
European model forecast for the wave pattern of the mid-level atmosphere valid 6 pm CST 12/23.

This extreme amplification will drive an Arctic surface air high pressure system out of the Northwest Territories with very cold air this week, with this air mass advancing into the US beginning Thursday into this weekend. Meanwhile stormier conditions will moving from the Bering Sea into the Chukchi Sea driving up temperatures in the far north. And California with all the fires? Remains abnormally warm and dry.

us_model-en-087-0_modez_2017121612_204_5436_217
Temperatures the afternoon of Christmas Eve (European Model forecast).
us_model-en-087-0_modez_2017121612_240_5436_220
Greatest signal for low to no precipitation the next 10 days is south-central to southern CA into much of AZ and NV.

The Arctic:

As I spoke about in a previous post, the Arctic is having its second warmest year on record and lowest annual sea ice volume on record as climate change continues to abnormally warm the Arctic. The highly amplified wave pattern is much a product of the current weak La Nina pattern. However, the intensity of the amplification and resulting amplified warming of the Arctic is also a function of the long-term global warming regime dominating the polar region and causing record warmth and reductions in sea ice. I noticed this amplified wave pattern will have interesting impacts on the Arctic weather pattern and possibly the tenuous sea ice beginning next week.

Right now, a prominent surface high pressure region…associated with the Beaufort Gyre…is over the Arctic Ocean north of Alaska and eastern Siberia. By the middle of next week, this gyre will weaken as strong low pressure systems approach the Arctic from both the Bering Sea and the far North Atlantic.

us_model-en-087-0_modez_2017121612_36_15056_149
Prominent high pressure of the Beaufort Gyre over the sea ice of the Arctic Ocean.
us_model-en-087-0_modez_2017121612_204_15056_149
European Model depiction of low pressure system advancing into the Arctic Ocean from the Bering Sea on Christmas Eve. This may be the strongest in a series of lows (2-3) beginning late week. Stormy conditions will also impact areas near Svalbard (islands just east of northeast Greenland) late-week and weekend.

The Gyre is vulnerable because of the areas of open water and tenuous sea ice which remains over the Chukchi Sea…record low extent for this time of year. The ice being cold creates the surface high pressure system and clockwise circulation. But last year, this gyre collapsed because of slow sea ice growth allowing for storms with warm, moist air to move into the Arctic and further slowed sea ice growth. It appears this may be forecast to happen again during the tail end of this month.

us_model-en-087-0_modez_2017121612_204_15056_217
European Model forecast surface temperatures showing well above normal temps shifting northward late week into Christmas Eve over the Arctic Ocean north Svalbard and the Chukchi Sea. While exact values will change, general pattern appears likely.

Depending on the strength of the low pressure systems, not only will the tenuous sea ice in the Arctic…widespread areas 1.5 meters or less in thickness (less than a meter in the Chukchi Sea)…deal with more warm air temperatures limiting sea ice growth, but also wave action which may destroy the ice, particularly from the Pacific side as cyclones are expected to move across the Arctic from the Pacific. We’ll see how much impact those storms have and how intense they are. If the upper-level wave pattern is as amplified as forecast by models 5-8 days out (no reason to think otherwise as he reach the point of good reliability for the upper-atmosphere), it’s a good set up for strong low pressure systems to develop in both the North Pacific and North Atlantic. And with the highly amplified blocking high over the Eastern Pacific, storms will be forced to track into Alaska and into the Chukchi and Beaufort Seas and deep Arctic Ocean.

–Meteorologist Nick Humphrey

If you like what you read and appreciate the time I put into writing on weather and climate topics, feel free to donate with PAYPAL. Every little bit helps a lot! Thank you!

Advertisements

Arctic Sea Ice Extent Rapidly Decreasing Because of Climate Change; Weather & Climate Implications

Today, NOAA presented the State of the Arctic report at the American Geophysical Union annual conference in New Orleans. The news from the report was devastating for potential weather and climate impacts. Lots of important info to talk about from this! Let’s summarize:

  1. Annual Arctic sea ice extent is the lowest in 1600 years. This is based on proxy data (tree rings, lake sediments, ice cores from the Greenland Ice Sheet). There has been an abrupt decrease in extent during the 20th century (continuing to present). 24991395_10215050817330895_108575701643656859_n
  2. Arctic sea ice extent reached a record minimum in the warm season in 2012. However, 2015-17 witnessed consecutive record low maximum extents in the cold season. 2016 also had the lowest extent on record in November or December. 2017 is also witnessing top two or three low daily extents in November into December, with record low sea ice in the northern Bering Sea and the Chukchi Sea (north of the Bering Strait between Alaska and Russia). Also very notable, sea ice VOLUME (which includes thickness of ice) has continued to suffer with 2015-17 in the top 4 for the lowest volume on record going back to 1979 (and based on decreasing of sea ice extent and thickness, likely much much longer than that). Multi-year ice…ice more than a year old…is now nearly extinct in the Arctic Ocean.

    siv_annual_max_loss_and_ice_remaining
    Arctic Sea Ice Volume since 1979. Note consistent and accelerating collapse of sea ice volume. Arctic ice volume may fall below the 2012 record at some point in the month of September in the next several years.
  3. The Arctic had its warmest year on record in 2016 and its second warmest year on record in 2017 in reliable records. The climate of the Arctic is warming to the point that permafrost is increasingly melting releasing methane and carbon dioxide, methane emissions from what are called methane hydrates (methane gas locked in water ice) are increasing from the very shallow continental shelves surrounding the Arctic Ocean and mid-latitude weather patterns are becoming altered because of reduced sea ice (more on this shortly). The Arctic tundra is also greening at an increasing rate because of rapid warming.
  4. NOAA specifically states that “the Arctic shows no signs of returning to a reliably frozen region of recent decades” because of continued climate change related warming.

Discussion – Leaving the Ice Age Era:

One thing that we must remember about the sea ice of the Arctic Ocean (and the Southern Ocean around Antarctica) is that sea ice is a product of Ice Age eras. Our planet has had a tendency historically to flip between two global climate equilibrium states with dramatically different regional weather and seasonal patterns. The Ice Ages and the Hot House “Jurrasic Park” climates have been the two long-term dominating climate regimes in Earth’s history. One characterized by huge ice sheets and low sea levels, the other characterized by no ice sheets, no sea ice and high sea levels. Human civilization has flourished in the latest interglacial period in the Ice Age era because the climate has remained largely stable for roughly 10,000 years (-1 to +0.5 degrees C relative to mid-20th century climate) and mild enough to for extensive agriculture and settlements.

a-2.earth_temperature_record
Estimated temperature of Planet Earth from 550 million years ago to the end of the 20th century.

But now, because of Anthropogenic Global Warming (AGW) from climate change, we are leaving that stability in the geologic blink of an eye.

globalwarming_projected.jpg.CROP.original-original
Projected rise in global temperature of 4 degrees C/8 degrees F (relative to mid-20th century) during the 21st century relative to the past 10,000 years.

Probably the most important regulars of climate during Interglacials are the “refrigerators” of the north and south…the Arctic Ocean sea ice and Antarctic Ice Sheet (also Greenland Ice Sheet). However, as temperatures warm because of human carbon dioxide emissions trapping heat in the global climate system, that heat warms the atmosphere and ocean, attacking the sea ice by providing excess latent heat of melting. For the Arctic, this reduces the sea ice extent and volume decade after decade. Eventually, it will get to a point, where sea ice will become so thin and tenuous, it will undergo collapse to what has been called a “blue ocean” event with 1,000,000 sq km or less ice at a minimum in September (2012 extent minimum record was 3.41 million sq km). The 2016 and 2017 extent minimums were in the top 10 with 4.14 and 4.64 million sq km, 2nd and 8th respectively. 8 of the top 10 warm season minimum extents (in km) have occurred since 2010 in the now 39 year record. The Arctic Ocean and lower atmosphere are warming and becoming more like the high latitude North Atlantic. Eventually sea ice is expected to disappear completely in the warm season in the Arctic. Some climate scientists have suggested over the past several years that the “blue ocean” event resulting from a collapse of sea ice extent could occur between 2015-2020 or so as multi-year ice has nearly gone extinct, leaving thin ice vulnerable to quick melting and battering waves from cyclones. Computer models have been terrible at dealing with the end of sea ice in the Arctic, suggesting it would stick around into the second half of this century.

Discussion – Weather and Climate Implications:

So why does loss of sea ice matter? Sea ice regulates the climate of the world in multiple ways. It acts as large white surface which reflects most of the shortwave solar radiation from the sun (high albedo). As a result, it keeps the Arctic and Northern Hemisphere (and world) cooler than otherwise. It’s wide physical presence means heat entering the Arctic Ocean goes into melting the ice in the warm season (latent heat of melting; heat goes into phase change of water from solid to liquid) instead of heating the ocean and atmosphere dramatically (sensible heat to change temperature). Losing sea ice ends its presence as a climate regulator, allowing for more abrupt warming of the atmosphere-ocean system and increasing moisture content in the atmosphere (water vapor is an additional greenhouse gas; and increased clouds may reflect some radiation, but also can limit cooling in darkness). In addition, the Arctic Ocean will warm as it is a dark surface (low albedo). Increasing ocean warming in the marginal seas of the Arctic Ocean is already leading to increased methane emissions from the shallow continental shelves (as subsea permafrost thaw the clathrates) and more rapid warming will lead to an increase in emissions of methane and carbon dioxide from land permafrost (see discussion by Arctic climate scientist Dr. Peter Wadhams of Cambridge University on YouTube). Methane is over 100 times more powerful greenhouse gas than carbon dioxide on a timescale of several years (it dissipates far faster in the atmosphere, but sudden releases can increase warming quickly). And all of these feedbacks will much more quickly destroy the sea ice extent through further warming for a longer period in the warm season until ice disappears completely.

Increased warming of the Arctic also has impacts on mid-latitude weather. There has been research suggesting that the jet stream can be strongly influenced by Arctic warming and sea ice extent (see discussion by Dr. Jennifer Francis on YouTube). This can include a weakening of the upper-level jet stream which depends on the temperature difference between the upper-level mid-latitudes and polar atmosphere (known in meteorology as “baroclinic instability”). This weakening can lead to the jet stream developing high-amplitude waves more frequently, allowing for powerful upper-level ridges of high pressure to develop and cause blocking of the progressive westerly flow. This blocking can cause more frequent stagnant weather for locations, developing droughts in some areas through prolonged dryness, long periods of heavy precipitation in other regions as well as places of very abnormally warm temps (greater extreme summer heat) vs. colder temperatures (but the warmth always significantly outpaces the cold). Increased warming of the atmosphere in general also increases rainfall rates. In addition, paradoxically, while parts of the mid-latitudes may go through below normal temps and cold weather, the powerful ridging can produce extremely abnormally warm temperatures over the Arctic regions, intensifying the warming of the far north.

An identical pattern to this has largely set up over the Northern Hemisphere November into December.

us_model-en-087-0_modez_2017121312_24_5477_449
Powerful high-amplitude ridges over the Eastern Pacific and North Atlantic. Pattern relatively stagnant at this time.
ANOM2m_past30_equir
Reanalysis of the average temperature of Earth and specified regions over the last 30 days (1981-2010 baseline…add 0.7 C to compare to late 19th century). Note extensive, persistent anomalous warmth of the Arctic.

These effects may overall lead to more abrupt warming of the world as a whole as well as (more importantly) changes in rainfall and snowfall patterns, relevant for crops and food security from increasing summer extremes (heat stress and heavy rainfall) and water resources (snow pack, groundwater, etc). Also relevant for forest health (destruction by increasing wildfires as well as bug infestations killing hundreds of millions of trees in the Western US). And a running theme in stories on climate change recently? “Faster than expected” or “Faster than previously thought”. The importance of Arctic sea ice cannot be overstated and, unfortunately, this major tipping point…which I would consider a “keystone” tipping point because of what effects it can have down the line on other parts of the climate system…seems to be on the brink. It has been 2.6 million years since significant sea ice did not regularly exist in the warm season in the Arctic Ocean.

The statistics of weather has already changed significantly because of global warming with far more extreme heat events, drought periods and heavy precipitation events than in the mid-20th century (see presentation by Dr. Aaron Thierry on shift to more extreme weather conditions; starts 12:30 min, recommend watching through 20:30 min; also see discussion of climate change on increasing extreme events by Dr. Stefan Rahmstorf). Going past tipping points far earlier than expected by climate models will increase the likelihood for far more extreme weather events as weather patterns and circulations change (in some cases difficult to predict ways). Clearly, the world still needs adequate mitigation and adaptation measures to deal with these rapid and possibly abrupt changes.

For more info into how climate change influenced global extreme weather events in 2016, see the latest report (issued today) by the American Meteorological Society with attribution studies on last year’s significant events.

–Meteorologist Nick Humphrey

If you like what you read and appreciate the time I put into writing on weather and climate topics, feel free to donate with PAYPAL. Every little bit helps a lot! Thank you!

Key Findings of the US Government’s Climate Science Special Report

Today, the US Global Climate Change Research Program released the Climate Science Special Report, Vol. 1 of the Fourth National Climate Assessment mandated by Congress to provide the latest scientific basis and impacts from climate change on the United States. Climate science continues to evolve, but in the direction of more significant realization of how humans have influenced the climate thus far, as well as how much more influence will come in the not to distant future.

Below are some of the headline findings provided in the rather powerful report (be prepared for a lot of INTENSE info):

    1. Earth’s average temperature has increased by 1 degree C (1.8 F) during the 1901-2016 period. This is faster than any rate known in the last 1,700 years.                 2017TempUpdate_Top10_Global_F_en_title_lg
    2. The average temperature of the contiguous United States has also increased by 1 degree C (1.8 F) during the 1901-2016 period. Satellite and surface observations are consistent in the detection of this rapid rise in temperature. With no change in the rate of greenhouse gas emissions, the CONUS is expected to experience a more abrupt average rise in temperature of 3.2-6.6 degrees C (5.8-11.9 F) between now and 2100.                                                                                 
      figure6_1
      Change in average surface temperature (annual and seasonal) for the period 1986-2016 since the period 1901-1960 (contiguous US; 1925-1960 for Alaska and Hawaii). Data from NOAA.

      figure6_8
      Projected changes in the coldest and warmest daily temperatures (°F) of the year in the contiguous United States. Changes are the difference between the average for mid-century (2036–2065) and the average for near-present (1976–2005) under the higher emissions scenario (RCP8.5). Maps in the top row depict the weighted multimodel mean whereas maps on the bottom row depict the mean of the three warmest models (that is, the models with the largest temperature increase). Maps are derived from 32 climate model projections that were statistically downscaled using the Localized Constructed Analogs technique. Increases are statistically significant in all areas (that is­­, more than 50% of the models show a statistically significant change, and more than 67% agree on the sign of the change). Data by NOAA.
    3. Temperature extremes in the United States are trending significantly toward record high temperatures over record low temperatures. This trend is expected to continue with the number of below freezing days also continuing to decline and days above 32 degrees C (90 F) continuing to rise.
      figure6_5
      Data by NOAA.

      figure6_9
      Projected changes in the number of days per year with a maximum temperature above 90°F and a minimum temperature below 32°F in the contiguous United States. Changes are the difference between the average for mid-century (2036–2065) and the average for near-present (1976–2005) under the higher scenario (RCP8.5). Maps in the top row depict the weighted multimodel mean whereas maps on the bottom row depict the mean of the three warmest models (that is, the models with the largest temperature increase). Maps are derived from 32 climate model projections that were statistically downscaled using the Localized Constructed Analogs technique. Changes are statistically significant in all areas (that is, more than 50% of the models show a statistically significant change, and more than 67% agree on the sign of the change).
    4. The global influence of natural variability is limited to small fraction of observed climate trends. Solar output and the Earth’s internal natural variability have contributed only marginally to the observed changes in the climate system over the past century. There is no convincing evidence for natural cycles in the observational record that could explain the changes in the climate system.                                                                                                                                                         
    5. Heavy precipitation events have increased across the US since 1901. The highest increase over the Northeast and the second highest increase over the Midwest.                                                                                                                                2017ClimateExtremes_Downpours_3_en_title_lg
    6. Northern Hemisphere spring snow cover, North American maximum snow depth and Western US snow-liquid equivalent have all declined since the early 20th century. At current rates of decline and assuming no change in water resource management, chronic, long-duration hydrological drought conditions are possible for portions of the United States by 2100.                                                                                                                                                                                               
    7. Global mean sea-level has risen 7-8 inches (~0.2 m) since 1900 with 3 of those inches since 1993. Relative to the year 2000 is very likely global mean sea-levels will rise up to 0.6 ft (0.18 m) by 2030, 1.2 ft (0.38 m) by 2050 and 4.3 ft (1.3 m)+ by 2100. A more rapid degradation of the West Antarctic Ice Sheet may mean physically possible sea level rise theoretically exceeding 8 ft (2.4 m) by 2100 (confidence is low on this).                                                                                                                2016StateOfClimate_SLR_en_title_lg
    8. The global ocean has absorbed more than 93% of the heat caused by global warming since the mid-20th century. The oceans have warmed by about 0.7 degrees C (1.3 F) during the 1900-2016 period. Assuming no emissions changes, warming of the oceans by an average of 2.7 degrees C (4.9 F) is expected by 2100.                                                                                                                                       2016StateOfClimate_HeatStorage_en_title_lg
    9. The global ocean continues to undergo rapid acidification because of dissolved carbon dioxide from atmospheric emissions. The rate of acidification is unparalleled in the past 66 million years (since the Cretaceous-Paleogene Impact Event). At the current rate, the pH of the global ocean may decline from its current average of 8.1 to as low as 7.8 by the end of the century. Seawater with pH <8 can be corrosive to shellfish, plankton and coral which depend on carbonate structures for their shells, backbones and skeletons. The greatest change in acidity will be in Arctic Ocean.

      figure13_5-1200
      Predicted change in sea surface pH in 2090–2099 relative to 1990–1999 under the higher scenario (RCP8.5), based on the Community Earth System Models–Large Ensemble Experiments CMIP5 (Figure source: adapted from Bopp et al. 2013 ).
    10. The Arctic is warming at a rate approximately twice as fast as the global average with a rapid decline in sea ice volume and extent since satellite observations began in 1979. At the current rate of warming, the Arctic Ocean will be effectively ice-free in the month of September by the 2040s.                       

      siv_annual_max_loss_and_ice_remaining
      Arctic Sea Ice Volume since 1979. Note gradual and accelerating collapse of sea ice volume. Arctic may fall below 1,000 cubic kilometers at some point in the month of September in as early as several years to a decade or so. This will happen when the yearly sea ice maximum and loss of what remains equal.
    11. Global warming has contributed “significantly” to ocean-atmosphere variability in the North Atlantic Ocean; as a result these changes have contributed to the observed upward trend in North Atlantic hurricane activity since the 1970s. North Atlantic hurricanes are expected to increase in intensity (maximum sustained wind potential) with increasing precipitation rates during the 21st century.                                    2017Hurricanes_Info_en_title_lg

      figure9_2-1200
      Tracks of simulated Saffir–Simpson Category 4–5 tropical cyclones for (a) present-day or (b) late-21st-century conditions, based on dynamical downscaling of climate conditions from the CMIP5 multimodel ensemble (lower scenario; RCP4.5). The tropical cyclones were initially simulated using a 50-km grid global atmospheric model, but each individual tropical cyclone was re-simulated at higher resolution using the GFDL hurricane model to provide more realistic storm intensities and structure. Storm categories or intensities are shown over the lifetime of each simulated storm, according to the Saffir–Simpson scale. The categories are depicted by the track colors, varying from tropical storm (blue) to Category 5 (black; see legend). (Figure source: Knutson et al. 2015; © American Meteorological Society).
    12. Large forest fires in the Contiguous US and Alaska have increased since the early-1980s. This increase is expected to continue with “profound” impacts on ecosystems.                                                                                                                           2016Wildfires_temp_WEST_en_title_lg

Some other findings of note:

-For the period 1901-2016, the Dust Bowl Era (mid-1930s) remains the most extreme era for heat. This is thought to be largely the result of significant land-surface feedbacks caused by precipitation deficits and poor land management leading to reduced vegetation and strong surface heating (which in turn promoted further drying and land degradation). However, we are on a path to eclipse this period in US climate history in the coming decades, particularly as colder conditions (more found in 1930s winters for example) continue to decline in a warming climate and extreme heat continues to increase.

-The Climate report explains (as has been explained in previous scientific literature) the period of so-called “global cooling” which occurred from the mid-1940s to mid-1960s: aerosol particles generated by WWII and post-war industrial production (esp. coal power plants) which reflected some solar radiation into space temporarily slowing long-term global warming, even as carbon dioxide concentration in the atmosphere continued to increase.

-The report notes that annual precipitation has decreased over the West, Southwest and Southeast, while increases have occurred over the Plains, Midwest and Northeast. They specifically mention an increase in mesoscale convective systems (organized clusters of thunderstorms which dump significant rainfall) over the Plains and Midwest since 1979. Mesoscale convective systems are expected to increase in frequency and intensity during the 21st century.

-While tornado climatology related to climate change has been difficult to understand because of the reliability of storm reports before the 1990s, scientists involved in the report have concluded one interesting aspect…there is moderate confidence in a decrease in tornado days (day when tornadoes of any number are confirmed), as tornadoes are increasing on those days. Greater volatility in tornado occurrence year-to-year as well as a trend toward an earlier first occurrence during the year have been observed. Studies looking at the ingredients for severe storms with all modes of potential activity (tornadoes, hail, wind) suggest an increased frequency and intensity of severe storms over areas prone to them in the US in a warmer world, but confidence on details is low.

-This report concluded that observed drought and precipitation increases (1901-2016) cannot be confidently attributed human-induced global warming. The Dust Bowl Era remains the benchmark period for extreme drought conditions. However recent negative trends in soil moisture are believed to be attributable to warming temperatures. Although soil moisture projections in climate models are still considered in their “elementary” stages in the science, based on what is known, there appears to be a signal for further decreases in soil moisture over portions of the US (particularly West and Plains) by the end of this century, increasing the risk of chronic hydrological drought.

-I find the key finding #11 I listed particularly important. There has been much debate between scientists (particularly more observational minded meteorologists vs. climatologists) about whether there has been truly observable increase in N. Atlantic hurricane activity seasonally beyond the natural variability, given the limited period of reliable satellite record and intensity measurements. This statement is given MODERATE confidence given that global warming has caused increases in sea-surface temperatures, oceanic heat content and natural cycles on multi-annual and multidecadal time scales involve changes in not only these thermodynamic variables but also dynamic ones in response (vertical wind shear, position/intensity of monsoon troughs, development of tropical waves into organized TCs).

Additional Thoughts:

This slideshow requires JavaScript.

Climate change will likely be one of the most difficult challenges the world will face this century (at least). Why? Why should we care?

When it comes to effects on people (which is what people care about), at the end of the day, what matters for the livelihood of people rich or poor? Food, water, living space. If these become challenged, you get human suffering (from economic to health threats) and geopolitical problems. The potential for significant drying and increasing chronic hydrologic droughts from loss of snowpack will lead to increasing populations in demand for resources seriously straining water resources. Crops around the world will face increasing difficulties from heat stress, prolonged droughts mixed with periods of more intense heavy rainfall events. Acidification and warming may threaten marine food resources already strained by overfishing around the world. Living space will become slowly threatened by sea level rise in low-lying areas and island nations…and more readily in the coming decades…by repeated far more extreme heat waves than previously in already hot, humid environments where cooling is not readily available, and possibly by diseases as ecosystems shift to different places, along with pests (which will also impact crops potentially).

Climate change isn’t just about warming, it’s about cascading impacts on the whole of the climate system. Without a drastic global shift to a low-carbon energy sources and the advancement of technology to remove carbon dioxide from the atmosphere, we are in store for a very challenging period in human history. This isn’t worse-case/best case or any of this. This is simply the path that we are on, no over-dramatic statements nor downplaying needed or tolerated. Hopefully we via our governments make the right choices.

–Meteorologist Nick Humphrey

Five Year Anniversary of Landfall of Superstorm Sandy

Five years ago today (October 29, 2012), the post-tropical remnants of what was Hurricane Sandy made landfall on the New Jersey coastline as a hurricane-force windstorm, causing destructive straight-line winds and historic, damaging surge from the North Atlantic extending from the Jersey coast north into the New York City Metro Area, with historic flooding of lower Manhattan.

Sandy_Oct_28_2012_1600Z
Image of extremely large Hurricane Sandy by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite on October 28, 2012. Sandy would become the largest tropical cyclone on record in the North Atlantic Basin.
Sandy produced widespread wind gusts of 75-90 mph across portions of New York and New Jersey with heavy rainfall totals of 7-10 inches across parts of New Jersey, Delaware, and Maryland. Storm surge was Sandy’s main cause of significant damage, with wind damage and flooding rainfall additional impacts. The post-tropical “superstorm” caused a 10-13 ft storm surge which damaged and destroyed homes and businesses along the Jersey Shore and Hudson Waterfront, with a record 13.88 ft water rise reported at Battery Park in Lower Manhattan.

Damage_from_Hurricane_Sandy_to_house_in_Brooklyn,_NY
Damage by Super Storm Sandy in Brooklyn, NY (“Proud Novice” on Wikipedia).
1200px-121030-F-AL508-081c_Aerial_views_during_an_Army_search_and_rescue_mission_show_damage_from_Hurricane_Sandy_to_the_New_Jersey_coast,_Oct._30,_2012
Super Storm Sandy damage in Mantoloking, NJ taken on October 30, 2012. (US Air Force).
1200px-Hugh_L._Carey_Tunnel_during_Hurricane_Sandy_vc
The flooded Brooklyn-Battery subway tunnel in NYC on October 30, 2012 (“vcohen” on Wikipedia).
Sandy’s expansive storm surge was more intense by multiple factors. As it came poleward, it grew significantly in size, a typical phenomenon for tropical cyclones moving into the mid-latitudes. However, Sandy’s weakening and mid-latitude interactions caused it become the largest North Atlantic tropical cyclone on record, producing a huge fetch (extensive wind over long stretch of open water). This fetch allowed for the building of significant ocean waves and piling up of water toward the shallow continental shelf of the Atlantic coast of the US. And although Sandy weakened somewhat and became “non-tropical”, this did not matter as the very large wind field remained and forward momentum of the very heavy ocean could not settle down in time before pounding the coastline with destructive surge.

In addition, Sandy made landfall at high tide, enhancing the storm’s ability to flood dry land areas and cause direct damage with battering waves. I will also note that this “flood reach” was even greater because of climate change-induced sea level rise. Global sea levels have risen 9 inches since 1880 and while the Intergovernmental Panel on Climate Change (UN) continues to indicate a likely sea level rise of up to 3.2 ft by 2100, many other reputable scientists have suggested the possibility of multi-foot sea level rise occurring this century as the result of exponential glacial melt feedbacks in Greenland and Antarctica. Perhaps as high as 6.5-16.5 feet by 2100 (see references #1-2 below). This, of course would be catastrophic for vulnerable coastal cities for both livability but initially for any places already exposed to storm surges. New York City is one most at risk.


Sea level rise has also been locally enhanced along the Northeast US Coast because of abnormally warm waters building offshore for years, leading to increased thermal expansion of the water surface upward. This may also be a result of climate change-induced weakening (#3) of the Atlantic Meridional Overturning Circulation (AMOC). While Superstorm Sandy wasn’t “caused” by climate change, it was part of an increasing regime of more extreme weather events (and events with with more extreme hazard variables) and a prelude to what will be far more frequent in the coming decades.

Sandy was retired after the 2012 Hurricane Season, causing 233 deaths from the Caribbean to the United States and producing an incredible $75 billion in damages (only 2nd to Hurricane Katrina). An incredible and devastating meteorological event which we can hope we continue to recover from and our country will be better prepared to mitigate against next time.

ussatsfc2012102921
Surface analysis at 5 pm EDT October 29, 2012 showing Superstorm Sandy just offshore the coast of New Jersey pounding the Mid-Atlantic to New England. The intense pressure gradient (shown by the isobars) caused areas of gale and storm force winds over the Great Lakes because of the expanse of the storm.
Scientific References (for the nerds like me!):

1- Hansen et al. 2016. (scientific technical)

2- New science suggests the ocean could rise more — and faster — than we thought (Washington Post/Oct 17)

3. Youtube video of conference presentation (2016) by Dr. Stefan Rahmstorf on weakening AMOC. Can also refer to (#1) on this issue as it relates to potential effect on ice sheet dynamics.

WxClimoEd Series, Post #1, Part 2: Understanding Global Climate Change Indicators

Hello Weather & Climate News readers! This post will be the first (Part II) in what will be my ongoing education article series WxClimoEd. I hope to write educational posts on various topics related to weather and climate to help enhance your understanding of various phenomena and their impact on the environment, individuals and society. These posts will present key ideas and concepts and provide occasional linked sources to further, more detailed information.

Understanding Global Climate Change (Indicators)

In Part 2 of this article series on Global Climate Change, I’ll discuss the indicators of climate change in progress on  Earth. Even without the global measurements of temperature, there are plenty of signs in the climate system that change toward a warmer world is in progress.

IMG_3897

Earth Undergoing Abrupt Climate Change

While global warming is considered to be detectable since the First Industrial Revolution (after 1750), since the latter half of the 20th century, the environment has begun to exhibit what could be considered “abrupt” changes. Among scientists who study natural abrupt change in the paleoclimate records have had some common thought on what “abrupt” means: 1) Changes in climate which can be witnessed within a human lifetime and 2) the change is very nonlinear; it far exceeds the mechanism which initiated the change in the first place (See this video presentation by Dr. White at the American Geophysical Union Annual Meeting discussing past abrupt climate change in the paleoclimate record). In the past, abrupt change usually occurred as a result of the advance or recession of ice sheets, leading to rapid change in local temperature or regional circulations (or even global distributions of precipitation or temperature patterns). Today, abrupt change is being increasingly witnessed as a result of an already unnaturally fast mechanism (rapid rise in carbon dioxide concentration, resulting in rapid rise in global temperatures relative to natural variability…multi-decadal to centennial  scales vs. multi-millennial).

Here are just some of  the abrupt changes resulting from the changing climate happening now:

  1. Decline in sea ice over the Arctic Ocean

siv_annual_max_loss_and_ice_remaining
Arctic Sea Ice Volume since 1979. Note gradual and accelerating collapse of sea ice volume. Arctic may fall below 1,000 cubic kilometers at some point in the month of September in as early as several years to a decade or so. This will begin the process toward widespread open ocean in the Arctic for a time in September.
2. Rapid increase in air temperature of the Arctic.

The Arctic (64-90N) has warmed around 3-4 degrees C since the 1881-1910 period (based on NASA data). 2-3 degrees C of warming has occurred just since the 1951-1980 period with notable warming since the year 2000. This has led to not only the rapid decline in Arctic sea ice, but the beginning the melting of land permafrost.

temps
Average air temperatures (over land and ocean) in the Arctic region, relative to 1951-1980 average. Shown is 1984 (year I was born) to 2016. Red box show rapid warming of Arctic since 2000 compared to previous decades. “315” = +3.15 degrees C anomaly. (NASA GISS)
Addendum: The rise in the average temperature of Earth as a whole can count as abrupt, as seen in the earlier graph (farther back up). Most warming has occurred since the 1970s. The top ten warmest years on record going back to 1880 have occurred since 1998 (with 1998 now the last year in the top ten from the 20th century). 2017 is expected to be the 2nd warmest year on record just slightly behind 2016.


3. Increase in Sea Surface Temperatures and Oceanic Heat Content of Global Ocean.

The average sea-surface temperature of the global ocean from 60S-60N has risen around one degree C since the 1881-1910 period. 0.5 degrees C warming has occurred since 1980. Like the global air temperature, SSTs have been most of their record warm years since the turn of the 21st century, with an accelerated pace of warming since 2000 (1.62 degrees C/century currently, compared to 1 degree C/century 1950-2000). 2017 sea surface temperatures are currently running the 2nd warmest on record (NOAA data).

ssts
Sea surface temperature anomalies 1880-2016 for various sectors of global ocean. Values on graph are in degrees F. Oceans have warmed roughly 2 degrees F/1 degree C.
As far as oceanic heat content, the oceans have accumulated over 100 zetajoules (1 x 10^23 joules) of heat energy in the upper 700 meters of the global ocean since 1993. An incredible amount of energy, with increasingly accelerated warming in the deep ocean below 700 meters since 1993.

4. Acidification of the Global Ocean.

Earth’s seawater is slightly basic (basic is ph > 7). The global average ph of the oceans has decreased from 8.25 to 8.069 since the 1750s (ph was 8.104 in the 1990s). This is caused by the oceans dissolving carbon dioxide (30-40% of carbon dioxide released by humans dissolves in the oceans). This interaction forms carbonic acid, with further chemical reactions leading to increasing concentrations of the hydronium ion (H+). This leads to a lowering of the ph. The rate of acidifcation is faster than at anytime in the past 300 million years! The rapid acidification has been more pronounced in the Arctic Ocean because of very cold water (colder water can absorb more dissolved gases). When ph falls under 8 in the coming decades (assuming no mitigation), marine life which depend on carbonate structures (shellfish, sea snails, corals, some types of plankton, etc) begin to suffer from the corrosive effects of less basic waters.

5. Sea Level Rise

rate-of-sea-level-rise-accelerating

Sea levels are rising as a result of meltwater from land and thermal expansion as oceans warm. As the atmosphere and oceans continue to warm and weaken the Arctic and Antarctic Ice Sheets, sea levels will continue to rise, with possible nonlinear positive feedbacks accelerating it. It has already accelerated since the end of the 20th century. “King Tides” have become an increasing problem because of sea level rise in the 21st century.

6. Increase in Extreme Weather and Climate Events

The end of the 20th century into the early 21st century has featured a statistical increase in extreme weather events. Climatologists usually classify “extreme” as being 4-5+ standard deviations from the mean of all events. Such increase in extreme events over the course of years means that natural variability is being dominated by global warming, and causing a continuously shifting climate pattern.

unnamed
The shift in the range of meteorological variables across the bell curve because of climate change. The curve represents the normal distribution of events with natural variability (climate teleconnections and seasonal). The small shift of the mean by climate change causes a significant increase in less common events at one tail as well as an increase in truly extreme events not previously observed in the reference climate regime. (Presentation slide by Erick Fernandes, 2015).
Extreme events include heat, flooding, rainfall rates, drought, and wildfires. All of these occurrences have been increasing the frequency and severity around the world because of climate change. In addition, there is evidence that because of the high rate of warming of the Arctic, the mid-latitude jet stream has become weaker with increased amplitude extremes, leading to short-term and longer-term patterns favorable for extreme conditions at the surface. For example, high amplitude ridges of high pressure which do not move much or reform constantly can lead to extended periods of drought and extreme heat (while other areas downstream may receive cooler temps but heavy rainfall and flooding. This is actually something that is observable on meteorological timescales. Dr. Stefan Rahmstorf discusses the increases in extreme events from climate change in a lecture HERE.


One thing I must emphasize with understanding the impacts of global climate change is that it is impacting the environments of our world now and continue to accelerate in the coming years and decades (assuming no major changes are done). Global warming…the primary force of climate change, caused by our immense release of greenhouse gasses from fossil fuels…is the dominate force behind the rate of change in climate behavior. According to the Intergovernmental Panel on Climate Change in their 5th assessment, the world should actually be experiencing anomalous COOLING right now, but instead we have warmed Earth above and beyond natural long term global temperature variability. So when people ask “Did global warming cause (insert extreme weather event)?”, it is the wrong question. Climate looks at a collection of events for a trend. What is clear is that global warming is NOW causing a statistically significant increase in extreme events and will continue to do so. There is no “new normal” but only a continuous “ramping up” of the Earth’s natural variability toward greater extremes relative to the beginning of the Industrial Revolution, with greater impacts as humanity leaves the stable global climate in existence since the beginning of civilization.

This may be something many do not appreciate, but it is factual. Human civilization has changed Earth’s climate system to the point that we as humans are turning up the “thermostat” and started a multi-centennial experiment in geoengineering. Heat, drought, flooding, rainfall rates, wildfire events, and jet stream amplitudes, as a result, have all increased significantly in just the past 30 yrs.

If the climate were a piece of music…think of Earth’s relatively short-term natural cycles as the melody and global warming as the dominating background harmony from which the melody plays over. If the harmony changes keys, the melody will respond and shift accordingly.

In Part 3, I’ll discuss the projected future impacts of climate change being actively researched (and some already happening) such as food security, human health and living space.

Hurricane Ophelia now a very rare Category 3 storm south of Azores

Hurricane Ophelia has strengthened into a Category 3 hurricane with maximum sustained winds of 115 mph as it moves south of the Azores. It is moving over prime atmospheric conditions, even as it overcomes waters of only 25 degrees C/77 degrees F. In normal tropical environments, tropical cyclones need water temperatures of 26 degrees C/79 degrees F to maintain themselves and warmer to significantly strengthen. However, the colder temperatures in the upper-atmosphere associated with the mid-latitude troposphere is providing Ophelia with ample atmospheric instability (warm, moist air rising into cold air aloft intensifying thunderstorm activity). In addition, mid-latitude dynamics are playing a role…the approaching frontal system and associated upper-level trough of low pressure approaching Ophelia is giving the system a “poleward outflow jet” to pull air away from the system and allow the surface low to strengthen.

us_sat-en-087-0_2017_10_14_16_15_15827_127
Meteorological Analysis of Category 3 Hurricane Ophelia. Favorable dynamic and thermodynamic set up allowing system to strengthen at high latitude, over cooler waters for hurricane maintenance. With that said, water temps under Ophelia are running 2-3 degrees C above normal, also allowing it to have its unusual intensity near Western Europe.

See my previous post from late last night for my wind forecast for Ireland. Strong winds should begin to impact the island midday Monday (local time), with stormy conditions lasting into Monday night. The southeastern Azores will see some gusty winds and 1-3 inches of rain as it passes by this evening and night.

–Meteorologist Nick Humphrey

Potential Impacts by Tropical Storm Nate this Weekend

Tropical Storm Nate, which developed as a depression yesterday, made landfall in Nicaragua this morning and is moving over eastern Nicaragua and Honduras this evening. Very heavy rainfall and flash flooding has already resulted in 22 deaths in Nicaragua and Costa Rica.

vis0
Heavy showers and thunderstorms producing heavy rain over portions of Central America from Tropical Storm Nate this evening and into tonight. (image valid at 5:15 pm CDT).

Nate is progressing generally northward and will emerge over the Northwest Caribbean Sea late tonight where it will have an opportunity to reorganize. The waters over that region are running in the range of 84-86 degrees F (29-30 degrees C), more than sufficient for re-intensification. With that said, the inner core will likely be badly “gutted” by the mountainous terrain of Nicaragua and Honduras and with a second landfall possible Friday evening, time will likely be limited for more robust intensification. With that said, minimal hurricane strength is possible, with a lower chance that the storm may get stronger if it’s inner core can re-organize quickly Friday.

205145_5day_cone_no_line_and_wind
National Hurricane Center forecast (issued 5 pm EDT Thursday) showing a likely landfall on the Yucatan Peninsula of Mexico Friday evening and likely US impacts on the northern Gulf Coast beginning Saturday evening.

A Hurricane Watch and Tropical Storm Warning is in effect for much of the coastal Yucatan Peninsula. Again, the major threats will be from water…heavy rain and freshwater flooding and also modest (although still hazardous) storm surge and high wave action.

Potential Impacts for Central Gulf Coast of US-

While many details are still in need of being honed in for the Central Gulf Coast…it is highly likely a tropical storm or minimal hurricane will approach the region Saturday evening with landfall early morning Sunday. The biggest threats will be from water (flooding/surge) with wind producing damage from falling trees and power outages.

p120i
NWS Weather Prediction Center 5 day accumulative rainfall forecast (valid beginning 7 pm CDT Thursday) showing heavy rainfall along the track of Nate and its remnants expected, particularly Saturday afternoon into early next week. Very heavy rainfall possible in Greater New Orleans area which is prone to freshwater flooding.

Sea surface temperatures are slightly cooler along the northern Gulf Coast north of the Loop Current (82-84 degrees F/28-29 degrees C). Still more than warm enough for intensification if the system can remain over the current (a slightly farther west track may leave it over slightly cooler waters longer).

SSTs
Analysis of Sea Surface Temperatures and the Loop Current. Nate will track along the Loop Current much of its track over water, providing with fuel to re-intensify. (Analysis by Earth Nullschool).

Also, given the shear currently over the Central Gulf will relax over the next couple of days (as an area of upper-level high pressure over Texas shifts westward and weakens), Nate will have an opportunity to re-intensify over the Gulf after leaving the Yucatan Peninsula. Computer models have some variability in timing of an upper trough which will move over the US Central Plains during the day Saturday. This will ultimately influence the exact track of the center of Nate. However both deterministic and ensemble members of the various models depict a likely landfall of the center somewhere from Southeast Louisiana to coastal Mississippi/Alabama. Regardless, widespread heavy rain (particularly near and east of the center), moderate storm surge flooding and high wind conditions will be likely over the coastal areas of these states by Saturday afternoon, spreading inland Saturday night and Sunday. Tropical storm force winds (sustained 39 mph+) will likely arrive on the LA Coast Saturday evening.

 

233552_earliest_reasonable_toa_34
Earliest Reasonable Arrival Time for Tropical Storm-Force (issued 5 pm EDT). Folks along the Central Gulf Coast should have preparations for stormy conditions completed by Saturday afternoon.

Tropical cyclone watches will likely be issued for portions of Louisiana, Mississippi and Alabama late tonight or early tomorrow morning.

Climatology Update-

The Atlantic Hurricane Season is currently running above normal (1966-2010 norms in parenthesis): 14 named storms (9), 8 hurricanes (6) and 5 major hurricanes (2). In terms of Accumulated Cyclone Energy (a function of maximum sustained winds over time), 2017 ranks (as of this post) as the 6th most active season on record for the North Atlantic Basin. The average temperature of the North Atlantic Main Development region (open tropics west of Africa) exceeded 83 degrees F (~28 degrees C) for the 9th time since 2002 (had never done so in the record prior going back to 1981). The MDR is the 3rd warmest on record overall.

DK69LgTVwAAXsJm