Effect of Sun-Mon Arctic Ocean Storm on Sea Ice

You may remember I posted last Friday about the major North Atlantic storm which was expected to move into the Arctic Ocean Sunday and Monday producing hurricane-force winds, 30 ft+ waves and temperatures over 40 degrees F above normal (near or even above freezing in places). Well that storm advanced through the Arctic and now noticeable effects can be seen (via satellite analysis) on sea ice concentration (amount of ice vs. open water in a given area) and on sea ice sheet growth and resulting extent.

North Atlantic Surface Analysis valid at 06 UTC February 5th (midnight CST) showing the 958 millibar low pressure system off shore northeast Greenland entering the Arctic Ocean from the North Atlantic basin. (US National Weather Service)
Global Forecast System model analysis valid 12 UTC February 5th (6 am CST). This shows the very strong sustained winds and (by Arctic standards north of 80N) extremely warm temperatures during the height of the storm. This was thanks to very strong warm air advection from the Atlantic Ocean. The system had a sub-tropical connection with heat and moisture originating from the subtropical western Atlantic. Average temperatures in many places should be -30 to -15 F (-34 to -26 C). (earth.nullschool.net)

Included are two images of the sea ice concentration…one I saved from the February 3rd, another just posted for February 6th. Lighter blues are for 90-95% concentration, with yellows and reds being for 75-90%.

This slideshow requires JavaScript.

Extent growth basically stopped between February 3-6 (near 13,300,000 sq km for four days).

2018 year-to-date extent (currently at record lows) vs 2016 extent (previous daily record lows for this time of year) and the 1980s average. Sea ice extent and volume collapse is underway in the Arctic Ocean because of Anthropogenic Climate Change caused by abrupt warming in the Arctic (notable since the 1980s, accelerating since the 2000s). 

More very above normal temperatures will hit the Arctic this weekend as a powerful blocking high pressure system over the Pacific (sound familiar…) raises temps once again across Alaska and allows storm tracks to head for the Bering Strait and Chukchi Sea once again. Meanwhile, the Atlantic side will continue to remain “open” with another storm also moving into the region this weekend. No storm appears to be nearly as powerful as the Sunday-Monday event, but the litany of systems bringing at least some wind, wave action and temps not far below the freezing point of salt water is no good for the Arctic.

Temperature anomaly (degrees above or below average) forecast by the GFS model for the Arctic region valid 18 UTC February 10th (noon CST). Normal is based on 1981-2010 baseline. To approximate the major effect of anthropogenic climate change since the end of the 18th century add +0.9 degrees C (K).
GFS maximum temperature forecast valid 18 UTC February 10th (noon CST). Very warm air temperatures on both the Atlantic and Pacific entrances to the Arctic Ocean.

Arctic sea ice is extremely important for everything from Arctic regional ecology, marine biology to effects on overall warming of the Arctic Ocean and surrounding land areas (and permafrost). There is also evidence that the rapid warming of the Arctic because of anthropogenic climate change is altering the polar jet stream circulation which may be leading to an increased frequency and magnitude of extreme weather events. 

Sea ice thickness and thickness anomalies in January 2018. (Zach Labe)

–Meteorologist Nick Humphrey




Wild Ride – More Cold Intrusions into North America/Europe, Powerful Warm Storm Headed for Arctic Ocean Monday

This winter has been a fascinating one to say the least. Wild oscillations between very abnormally warm and very abnormally cold while other places are are just consistently very warm. Or perhaps just very dry. Much of this has been thanks to the current La Nina pattern in place over the Tropical Pacific. The atmospheric pattern leading to abnormally cooler waters over the eastern tropical region also lead to the promotion of strong high pressure systems over the Central North Pacific with unusually higher amplitude jet streams. This favors a polar jet aiming for the Pacific Northwest, northern tier and into the northeastern third of the country while the Southwest and Sunbelt see drier conditions.


Conditions of at least “Abnormally Dry” cover over 67% of the Continental US. It is the most coverage in abnormally dry conditions since February 5, 2013. It is, interestingly, the 49th greatest extent of at least Abnormally Dry conditions on record out of 944 recorded weekly updates (over 18 years now). Conditions of at least D1 “Moderate Drought” coverage over 38% of the Continental US. It is the most coverage in D1 conditions since April 22, 2014.

Of note with this pattern regime has been the, at times, extreme nature of the jet stream amplitudes. They have driven very warm temperatures into the Arctic with record low sea ice across the Arctic Ocean, the warmest December on record across the state of Alaska, and record high temperatures in portions of the Southwest US in January with the aforementioned persistent drying and intensifying drought concerns. 

Meanwhile, significant Arctic intrusions have been impacting the US, particularly in January and more appear likely in February as “teleconnections”…patterns in global circulation which give clues toward a general weather regime for a region of the world…show signs of further intense extreme jet stream amplitudes with very strong upper-level high pressure systems blocking storm tracks over the north Pacific and Bering Sea, which downstream will mean a cross polar flow in the upper atmosphere of very cold air upper troughs and surface Arctic fronts and high pressure systems over northern Plains/Midwest into the Northeast US. The Deep South should escape as warmer air from the subtropics attempts to advance north and may keep the Arctic air at bay. Europe looks to also have periods of similar cold (and interior Siberia of course! Check out the incredible cold they had last month).

Temperature Anomalies in the US (Sunday, Thursday) and in Europe (Monday). Widespread temps below freezing during the day in parts of central and Eastern US and central and eastern Europe during these cold periods. Very persistent warmth with highs in the 60-80s in the Southwest US.


Powerful Arctic Ocean Storm Sunday-Tuesday

While the mid-latitudes get hit with Arctic cold, the Arctic is being pounded by significant amounts of mid-latitude heat. And now the computer models are pointing towards a major North Atlantic storm developing early this weekend, moving over Greenland and then into the middle of the Arctic Ocean Sunday night-Monday. This storm will be very powerful…as strong as any classic North Atlantic ocean winter storm, and will bring significant amounts of high winds, battering waves and high “heat” to the Arctic. How warm? Perhaps as warm as 50-60 degrees F above normal temperatures over much of the Arctic Ocean. This will mean highs near or just above freezing up to the North Pole!

Temperature forecast by the Global Forecast System model for noon CST Monday showing near or above freezing temperature penetrating deep into the interior Arctic as a result of intense warm air advection.
A significant sector of the Arctic Ocean will have air temperatures over 40 degrees F above normal (or higher) during the day Monday.

This storm is forecast to initially form southwest of the tip of Greenland and east of Quebec Friday and will beginning moving over Greenland Saturday. Sunday, the system will begin to impact the Arctic, with warm and moisture transport from the North Atlantic (all the way from the Azores!) increasing abruptly late-Sunday. By Monday morning, models indicate waves moving up the Fram Strait toward the Arctic may be as high as 30 ft in strong south-southwesterly flow. Over the sea ice sheet, the low pressure system will be intense as it emerges from Greenland…possibly sub-960 millibars with widespread wind gusts of up to hurricane-force likely over much of the interior Arctic Ocean east and south of the low on the Atlantic side.

GFS depiction of the powerful low pressure system over the central Arctic Ocean on Monday. The European model has a similar strength low. Winds up to hurricane-force wind gusts and battering waves are likely conditions for the tenuous sea ice.
Forecast significant wave heights for early Monday with the worst of it in the Fram Strait.

Why this storm is so significant is because the Arctic sea ice is continuing to undergo collapse because of anthropogenic climate change. If the Arctic climate warms to the point that it simply cannot support sea ice in the warm season, with the Arctic Ocean warming as a result of very low albedo (reflectivity to visible light which would otherwise limit warming) compared to white ice (or latent heat of melting/freezing, instead of heat going into warming the ocean directly), this will have dramatic effects on not only regional climate but global climate (I can go into greater details in this in the comments or provide resources). Generally this was something expected much later in the future, but may occur earlier than expected, although it is difficult to predict when exactly this will occur as it would be nonlinear and abrupt. However, as mentioned, ice volume and extent for ice are running at record or near record lows across the Arctic Basin. Some of these effects on albedo and heating have already begun to be felt over the past several years on the marginal seas which are beginning to become increasingly ice free during the warm season (Chukchi Sea, Beaufort Sea, Eastern Siberian Sea), but it’s important to not have the interior Arctic Ocean lose significant ice. Particularly in the winter, but it has been struggling just to freeze this winter! For more on recent sea ice developments see these videos by Paul Beckwith (M.Sc, PhD candidate; HERE and HERE).

In the meantime, while we have year to year variability…various teleconnection patterns, anthropogenic forcing (CO2, other gasses) is the most dominant regime on our climate and so even while I must emphasize weather is not climate…I must also emphasize that climate is a statistical distribution of weather events; and so extreme weather events which are increasing in frequency and magnitude are a sign of our climate shifting to more extreme conditions and in sensitive places (particularly cold climates like the Arctic), those shifts are incredibly noticeable.

–Meteorologist Nick Humphrey


Discussion of Final Analysis of 2017 Hurricane Harvey

The 2017 North Atlantic Hurricane season was a devastating one in terms of loss of life as well as property damage for the United States and the Caribbean. The National Hurricane Center released its post-season report on Harvey which caused great destruction to parts of Southeast Texas and Southwest Louisiana. What follows is a brief summary and discussion of Harvey based on info from that report as well as other sources related to Harvey’s impacts. The full report is linked at the end of this post in the references.

Meteorological Discussion

What became Harvey was originally a tropical disturbance which came off the West Coast of Africa on August 12th. It is common during August and September for land-based thunderstorm complexes known as mesoscale convective systems to move westward off the African coast near or south of the Cape Verde (also known as the Cabo Verde) Islands and later develop into long-lived tropical cyclones. Harvey was a classic “cape-verde” type storm as it would later develop into a tropical depression with a well-defined center on August 16th.

The depression intensified into a storm and given its name 12 hrs after initial development. It peaked over the open Atlantic at 40 knots (~45 mph), moving over the islands of Barbados and St. Vincent on August 18th. However, increasing vertical wind shear (increasing winds with height tilting and blowing the thunderstorms away from the low pressure center) over the central Caribbean Sea lead to Harvey’s dissipation to a remnant low later that day.

Harvey moving over Barbados and St. Vincent on August 18, 2017.

The remnant circulation moved over the Yucatan Peninsula on Aug 22nd and redeveloped into a tropical depression over Bay of Campeche on August 23rd, 150 n mi west of Progreso, Yucatan, Mexico.

The initially poor organization of the reformed Harvey transitioned to a period of rapid intensification late on the 23rd as deep convection began to concentrate near the center. This was aided by an environment of light shear, very warm sea surface temperatures and high mid-level moisture. Intensification would continue until landfall on the 26th. Harvey reached Category 3 midday on the 25th and intensified into a Category 4 as it made its landfalls on the Texas coast early August 26th (the evening of the 25th local time). The initial landfall was on San Jose Island, TX as a Category 4 with maximum sustained winds of 130 mph (115 knots) with a second landfall on mainland Texas in northeast Copano Bay as a Category 3 with maximum sustained winds of 120 mph (105 knots). Wind damage was extreme and devastating in Aransas, Nueces, Refugio and the eastern part of San Patricio Counties. 15,000 homes were destroyed and 25,000 homes damaged. The City of Rockport was hit the hardest as the Category 3+ wind field moved into that area causing both extensive wind and surge impacts. The highest surge observed in Harvey was generally in the range of 9-11 ft.

Hurricane Harvey approaching landfall on the Texas Coast the evening of August 25, 2017 (local time).
Hurricane Harvey making landfall in Texas as seen by radar. Note the “lumpy”, wavy undulations within the eye (such as near Rockport and north of Port Aransas in this image). These are mesovortices where winds may have been locally stronger within the inner eye wall of the hurricane.

Harvey meandered in light steering currents, “stuck” between a mid-tropospheric high pressure system over the Four Corners states and another mid-troposphere high over the Gulf of Mexico. Torrential rains fell over Houston Metro and the Golden Triangle near a stationary front which formed on the north and east side of Harvey.


This slideshow requires JavaScript.

The rainfall of Harvey was truly incredible. A storm total of 60.58 inches was confirmed Nederland, TX; 60.54 inches in Groves, TX. Much of the heaviest precipitation fell in the first 72 hrs of the event. Previous continental US record for a tropical cyclone is 48 inches in Medina, TX (1978). The extreme nature of Harvey was displayed in that 18 values over that continental record of 48 inches reported across southeastern TX, with 36-48 inches recorded across the Houston metro area. However, Multi-Sensor Precipitation Estimates (MPE), which includes radar-derived rainfall intensity estimates suggests 65-70 inches where few observations were available or observations failed early in the event. Maximum rainfall measured in Louisiana was 23.71 inches in Vinton, LA, with MPE suggesting a more representative 40 inches as Southeast Southwest LA obs were sparse.

By Jordan Tessler for Capitol Weather Gang.



The large-scale or synoptic set up for the Harvey exceptional rainfall event is not particularly unique. Heavy rain bands formed along a modest frontal boundary situated initially near Houston, then the Golden Triangle region in Southeast TX (Beaumont, Port Arthur, Orange, TX area). Enhanced convergence and convective lift with warm cloud droplet precipitation processes allowed for enhanced rainfall rates in abundant thunderstorms. The combination of extremely high rainfall rates of up to 5-7 inches per hour and the stationary nature of the near coastal frontal boundary and Harvey itself contributed to the extreme total accumulation and massive flooding.

Training rain bands moving over the Houston Metro area the morning of August 27, 2017.
Very heavy rainfall in the Golden Triangle region of east TX the early morning of August 30, 2017.

NOAA analysis determined that areas of Southeast TX experience a flood with an annual probability of <0.1% (equivalent to a >1000 year flood event). I believe this is one of the most important parts of the National Hurricane Center report, so I’ll quote it:

While established records of this nature are not kept, given the exceptional exceedance probabilities, it is unlikely the United States has ever seen such a sizable area of excessive tropical cyclone rainfall totals as it did from Harvey.

Mesoscale Precipitation Discussion by the National Weather Service – Weather Prediction Center on August 27, 2017. Historic, devastating flooding underway in the Houston Metro Area at the time.

In addition to storm surge, wind and flooding rains, Harvey produced 57 tornadoes (many in the Houston Metro area) and killed 68 people directly with an additional 35 indirect deaths. All direct deaths were in Texas and it was the deadliest tropical cyclone for Texas since 1919. All but three direct deaths were caused by freshwater flooding.

According to NOAA, preliminary damage analysis suggests estimated damages of $125 billion, making Harvey the second-costliest hurricane on record in the North Atlantic basin, only behind Hurricane Katrina, when adjusted for inflation.

Connection to Anthropogenic (human-caused) Climate Change

During and immediately following the events of Hurricane Harvey, there was intense controversy over even discussing climate change as it related to the extreme events related to Hurricane Harvey. Even mentioning climate change in reference to an individual extreme weather event. A lot of opinions were thrown about, but the science of climate change has evolved dramatically in the past 10 years and climate researchers have a much better understanding of many of the connections between climate variables and the statistics of weather which make up the recent past and current climate. From this, attribution studies can be conducted to determine a likelihood of connection to the changing climate regime. A attribution study was done by World Weather Attribution (#2 below) and the probabilistic statistical analysis determined that the record rainfall from Harvey was approximately a) 3 times more likely and b) 15% more intense in terms of rainfall rate because of climate change. One location witnessed a return period for extreme rainfall of 9000 years with a high degree of statistical confidence. The impacts were consistent with what would be expected with 1 degree C+ of global warming since the late 19th century (the world has thought to have begun warming because of humanity since the mid 18th century). I did an extensive post previously during this most recent hurricane season on the climate change connection with includes references to numerous recent peer reviewed papers HERE.



#1 – Harvey Report (National Hurricane Center, 2018)

#2 – Oldenborogh et al. 2017

See my previous posts in this blog on Hurricane Harvey from last August HERE.

–Meteorologist Nick Humphrey


Abrupt Climate Change Tipping Elements

While anthropogenic climate change is generally discussed in the context of gradual change (perhaps, “gradual” by standards of human lifetimes…still extremely fast by geological timescales…), there are tipping elements in the climate system which have the potential to cause very abrupt and extremely rapid shifts in climate states on regional and (more importantly) global scales. Tipping points are still somewhat controversial in the science of climate change, but there is precedence for it in the paleoclimate record; from the ice age cycles to some of the most infamous extinction-level events in Earth’s history where species simply had no chance to adapt.

I’ve discussed the concept of abrupt climate change previously and suggested that we are currently in a period of abrupt climate change. “Abrupt” defined as events occurring within less than a normal human lifetime which normally do not do so. Many scientists have studied the potential in the present or past of abrupt climate change (or quasi-“runaway” global warming which is abrupt) including Dr. James White, Dr. Jennifer Francis, Dr. Peter Wadhams, Dr. David Wasdell, and many others. Much research has looked at abrupt climate change as a function between a forcing mechanism on a system and a “breaking system” (a negative feedback) which stops the system from reaching a tipping point. However, if the forcing overcomes the breaking and forces it over the tipping point, there is the abrupt (temporally rapid and structurally changed) shift to a new climate state vastly different from the previous state (see excellent discussion on the topic by Dr. David Wasdell…a climate scientist who’s done peer review work for the Intergovernmental Panel on Climate Change of the UN).

Tipping Elements. (Postdam Institute for Climate Impact Research).

Our current more abrupt climate change…which one may argue began in the 1980s with a more rapid rise in global air and sea surface temperatures, decrease in sea ice extent/volume, ocean acidification, land glacier retreat, among other climate change signals (noted by both the IPCC as well as the US in recent climate reports)…appears to have been caused by our rapidly increasing emissions of greenhouse gasses, including carbon dioxide in the atmosphere since the 1960s. CO2 concentration was around 315 parts per million molecules of air in 1960 (compared to 285 ppm at the end of the 19th century). We’re already near 410 ppm in 2017…twice an increase in concentration in nearly the same amount of time. Methane, a short-term (150+ times more powerful as carbon dioxide within a few years), but extremely powerful greenhouse gas has also rapidly increased because of both human and natural sources.


However, as anthropogenic climate change continues to evolve, assuming no *significant* human intervention (specifically removal of carbon dioxide and cooling of the Arctic), may lead to further tipping points being reached within the climate system which may accelerate change further. Changes which can happen over the course of just years. These more specific “sub-system” tipping points are of particular interest to some of the previous researchers mentioned. So let’s discuss a couple of interest…

Tipping Point #1: Arctic Sea Ice Sheet Collapse

Personal opinion here…I firmly believe of all the abrupt climate change tipping points, this one is likely the most imminent. Arctic sea ice has been rapidly decreasing in extent and thickness (and therefore, volume) since the 1980s. Numerical climate models in the past have attempted to predict the collapse of sea ice (what some refer too as the effective “ice free” Arctic in the warm season…roughly 10% of the Arctic Ocean Basin without ice or less). Previous predictions have called for dates such as the 2080s and more recently, the 2040s. Now there are scientists such as Dr. Paul Beckwith and Dr. Peter Wadhams and others openly giving a likelihood that the first “ice free” or “blue ocean” event will occur by or before 2020! 2017 witnessed the record low annual Arctic sea ice volume, caused by very thin tenuous ice. Where widespread, thick ice used to exist in the Arctic, tenuous thin ice only remains, ready to be destroyed by random storms and influxes of heat from the Atlantic and Pacific…a process which is already happening.


What is important about this tipping point? If most of the ice disappears from the Arctic Ocean, albedo (reflectivity) in the northern hemisphere will be significantly reduced, replacing white ice with very dark ocean, warming the Arctic Ocean column and warming and moistening the atmosphere (also clouding it, retaining heat in the polar night, making new sea ice difficult to form). Of course, this more rapid heating of the Arctic will more rapidly raise the overall average temperature of Earth as well. Note…there has not been an “ice-free” Arctic over in over 3 million years! It will also have have implications on the jet stream which depends on temperature gradients between the mid-latitudes and the Arctic for it’s strength and progression of waves around the globe – it would become much weaker, shift farther north and exhibit much greater amplitude waves with stagnant, extreme weather (see HERE and HERE).

This tipping point could set off other issues such as prolonged heat waves and droughts, leading to other tipping events such as forest diebacks (and then wildfires) and methane releases in the high tundra and methane clathrates from subsea permafrost in Arctic continental ice shelves (more on clathrates). This would release more carbon into the atmosphere. Abrupt changes in precipitation distribution (dryness or heavy precipitation) and extreme heat would pose threats to agricultural production which is very sensitive to individual weather events, let alone the climate stability which we’ve been accustomed too for the past 10,000 years since the end of the last glacial period.

Tipping Point #2: Equatorial Super Rotation

Another rather daunting tipping point is actually a common feature of several planets in our own solar system. It is called equatorial super-rotation. None of the previous scientists have dealt with this topic, but it is of interest to me as a meteorologist and is actually not a current feature of Earth’s atmosphere. It is a phenomena in which the atmosphere around the tropics and subtropics actually spins faster than the planet’s rotational velocity. This super rotational velocities occur on the terrestrial planet Venus and the Jovian planets (such as Jupiter and Saturn).

How would this occur on Earth from anthropogenic climate change and what would be the impacts on climate? Well, typically, the Earth’s tropical circulatory pattern involves structures known as Hadley Cells which features rising motion near the Equator and sinking motion in the subtropical regions. Air at the surface then flows equatorial-ward towards a convergence zone (the Intertropical Convergence Zone or Monsoon Trough) with the Coriolis force turning the air flow toward the right/left in the northern/southern Hemisphere, generating the easterly trade winds. The Hadley Cell expands and migrates north and south depending on the seasons between the two hemispheres.


With climate change however, increasingly extreme surface heating in the tropics is theorized to possibly lead to a situation where a single Hadley Cell develops, becoming extremely powerful and expansive. This would lead to the center of it straddling the equator with a strong upper-level equatorial westerly jet (the super-rotational flow).  Significant areas experiencing hyper-aridity would exist over much of the mid-latitudes as far less moisture is transported from the tropics and high precipitation regions would be found much further poleward than found in the current climate regime. This tipping point in modeling isn’t expected until late century, but again, given the rate at which observed changes in the climate system are evolving relative to the limitations of modeling, it is not truly known when such a tipping point could actually be initiated.

Human Societal Tipping Points…

Of course, with anthropomorphic climate change, one of the biggest issues is humanity’s ability to deal with increasingly rapid and extreme changes and harms. Humans depend need food, water, and shelter to thrive and when repeated meteorological (hurricanes, tornadoes, floods, etc) and climatological (long-term agricultural and hydrological droughts) disasters strike, society can take very serious hits. Much of the world depends on agriculture from the US and China, for example. Freshwater resources around the world are under increasing stress from overuse by increasingly growing populations. More and more people are crowding into cities which will be under the influence of urban heat islands which may deal with hotter temperatures as the climate warms.

Projected decadal Palmer Drought Index based on local norms during course of 21st century. Timeline based on “high-emissions” scenario of IPCC, which does not account for certain tipping elements, only human emissions. Climate Change expected to cause hyper-aridity (for US, equivalent to 1930s Dust Bowl conditions) throughout US/Europe, South Africa and Amazon without significant human intervention, well beyond current measures. Note wetter conditions in high latitudes.

The ability of humanity to deal with the changes ahead will be by far the most significant challenge in the coming years ahead.

–Meteorologist Nick Humphrey


Major Pattern Change for North America and Arctic Next Week.

A major weather pattern shift will be occur next week for North America into the Arctic as the jet stream…which already has been largely higher in amplitude and experiencing some blocking with little eastward progression of long-waves in the upper-atmosphere, will becoming extremely amplified (north-south) next week bringing very warm air up into Alaska, Yukon and the Arctic Ocean and a modified Arctic air mass from Nunavut and the Northwest Territories of Canada into the central US. Let’s take a look at things.

The current pattern dominating North America has been strong ridge of high pressure over the Western US or Eastern Pacific with a prominent trough over the eastern US with some fluctuation in the wave pattern east or west, but not much significant change, except in the center of the country which has seen more significant swings between these two states. The east, including even the Southeast saw significant snow. The west has seen abnormal warmth with record fires in California. Currently the ridge of upper-atmosphere ridge is forecast by US and European models to build to an extremely high amplitude the end of next week north over portions of Alaska and Yukon and into the margins of the Arctic Ocean. This as a very intense trough is forced south over the US.

European model forecast for the wave pattern of the mid-level atmosphere valid 6 pm CST 12/23.
This extreme amplification will drive an Arctic surface air high pressure system out of the Northwest Territories with very cold air this week, with this air mass advancing into the US beginning Thursday into this weekend. Meanwhile stormier conditions will moving from the Bering Sea into the Chukchi Sea driving up temperatures in the far north. And California with all the fires? Remains abnormally warm and dry.

Temperatures the afternoon of Christmas Eve (European Model forecast).

Greatest signal for low to no precipitation the next 10 days is south-central to southern CA into much of AZ and NV.
The Arctic:

As I spoke about in a previous post, the Arctic is having its second warmest year on record and lowest annual sea ice volume on record as climate change continues to abnormally warm the Arctic. The highly amplified wave pattern is much a product of the current weak La Nina pattern. However, the intensity of the amplification and resulting amplified warming of the Arctic is also a function of the long-term global warming regime dominating the polar region and causing record warmth and reductions in sea ice. I noticed this amplified wave pattern will have interesting impacts on the Arctic weather pattern and possibly the tenuous sea ice beginning next week.

Right now, a prominent surface high pressure region…associated with the Beaufort Gyre…is over the Arctic Ocean north of Alaska and eastern Siberia. By the middle of next week, this gyre will weaken as strong low pressure systems approach the Arctic from both the Bering Sea and the far North Atlantic.

Prominent high pressure of the Beaufort Gyre over the sea ice of the Arctic Ocean.

European Model depiction of low pressure system advancing into the Arctic Ocean from the Bering Sea on Christmas Eve. This may be the strongest in a series of lows (2-3) beginning late week. Stormy conditions will also impact areas near Svalbard (islands just east of northeast Greenland) late-week and weekend.
The Gyre is vulnerable because of the areas of open water and tenuous sea ice which remains over the Chukchi Sea…record low extent for this time of year. The ice being cold creates the surface high pressure system and clockwise circulation. But last year, this gyre collapsed because of slow sea ice growth allowing for storms with warm, moist air to move into the Arctic and further slowed sea ice growth. It appears this may be forecast to happen again during the tail end of this month.

European Model forecast surface temperatures showing well above normal temps shifting northward late week into Christmas Eve over the Arctic Ocean north Svalbard and the Chukchi Sea. While exact values will change, general pattern appears likely.
Depending on the strength of the low pressure systems, not only will the tenuous sea ice in the Arctic…widespread areas 1.5 meters or less in thickness (less than a meter in the Chukchi Sea)…deal with more warm air temperatures limiting sea ice growth, but also wave action which may destroy the ice, particularly from the Pacific side as cyclones are expected to move across the Arctic from the Pacific. We’ll see how much impact those storms have and how intense they are. If the upper-level wave pattern is as amplified as forecast by models 5-8 days out (no reason to think otherwise as he reach the point of good reliability for the upper-atmosphere), it’s a good set up for strong low pressure systems to develop in both the North Pacific and North Atlantic. And with the highly amplified blocking high over the Eastern Pacific, storms will be forced to track into Alaska and into the Chukchi and Beaufort Seas and deep Arctic Ocean.

–Meteorologist Nick Humphrey


Arctic Sea Ice Extent Rapidly Decreasing Because of Climate Change; Weather & Climate Implications

Today, NOAA presented the State of the Arctic report at the American Geophysical Union annual conference in New Orleans. The news from the report was devastating for potential weather and climate impacts. Lots of important info to talk about from this! Let’s summarize:

  1. Annual Arctic sea ice extent is the lowest in 1600 years. This is based on proxy data (tree rings, lake sediments, ice cores from the Greenland Ice Sheet). There has been an abrupt decrease in extent during the 20th century (continuing to present). 24991395_10215050817330895_108575701643656859_n
  2. Arctic sea ice extent reached a record minimum in the warm season in 2012. However, 2015-17 witnessed consecutive record low maximum extents in the cold season. 2016 also had the lowest extent on record in November or December. 2017 is also witnessing top two or three low daily extents in November into December, with record low sea ice in the northern Bering Sea and the Chukchi Sea (north of the Bering Strait between Alaska and Russia). Also very notable, sea ice VOLUME (which includes thickness of ice) has continued to suffer with 2015-17 in the top 4 for the lowest volume on record going back to 1979 (and based on decreasing of sea ice extent and thickness, likely much much longer than that). Multi-year ice…ice more than a year old…is now nearly extinct in the Arctic Ocean.

    Arctic Sea Ice Volume since 1979. Note consistent and accelerating collapse of sea ice volume. Arctic ice volume may fall below the 2012 record at some point in the month of September in the next several years.
  3. The Arctic had its warmest year on record in 2016 and its second warmest year on record in 2017 in reliable records. The climate of the Arctic is warming to the point that permafrost is increasingly melting releasing methane and carbon dioxide, methane emissions from what are called methane hydrates (methane gas locked in water ice) are increasing from the very shallow continental shelves surrounding the Arctic Ocean and mid-latitude weather patterns are becoming altered because of reduced sea ice (more on this shortly). The Arctic tundra is also greening at an increasing rate because of rapid warming.
  4. NOAA specifically states that “the Arctic shows no signs of returning to a reliably frozen region of recent decades” because of continued climate change related warming.

Discussion – Leaving the Ice Age Era:

One thing that we must remember about the sea ice of the Arctic Ocean (and the Southern Ocean around Antarctica) is that sea ice is a product of Ice Age eras. Our planet has had a tendency historically to flip between two global climate equilibrium states with dramatically different regional weather and seasonal patterns. The Ice Ages and the Hot House “Jurrasic Park” climates have been the two long-term dominating climate regimes in Earth’s history. One characterized by huge ice sheets and low sea levels, the other characterized by no ice sheets, no sea ice and high sea levels. Human civilization has flourished in the latest interglacial period in the Ice Age era because the climate has remained largely stable for roughly 10,000 years (-1 to +0.5 degrees C relative to mid-20th century climate) and mild enough to for extensive agriculture and settlements.

Estimated temperature of Planet Earth from 550 million years ago to the end of the 20th century.

But now, because of Anthropogenic Global Warming (AGW) from climate change, we are leaving that stability in the geologic blink of an eye.

Projected rise in global temperature of 4 degrees C/8 degrees F (relative to mid-20th century) during the 21st century relative to the past 10,000 years.

Probably the most important regulars of climate during Interglacials are the “refrigerators” of the north and south…the Arctic Ocean sea ice and Antarctic Ice Sheet (also Greenland Ice Sheet). However, as temperatures warm because of human carbon dioxide emissions trapping heat in the global climate system, that heat warms the atmosphere and ocean, attacking the sea ice by providing excess latent heat of melting. For the Arctic, this reduces the sea ice extent and volume decade after decade. Eventually, it will get to a point, where sea ice will become so thin and tenuous, it will undergo collapse to what has been called a “blue ocean” event with 1,000,000 sq km or less ice at a minimum in September (2012 extent minimum record was 3.41 million sq km). The 2016 and 2017 extent minimums were in the top 10 with 4.14 and 4.64 million sq km, 2nd and 8th respectively. 8 of the top 10 warm season minimum extents (in km) have occurred since 2010 in the now 39 year record. The Arctic Ocean and lower atmosphere are warming and becoming more like the high latitude North Atlantic. Eventually sea ice is expected to disappear completely in the warm season in the Arctic. Some climate scientists have suggested over the past several years that the “blue ocean” event resulting from a collapse of sea ice extent could occur between 2015-2020 or so as multi-year ice has nearly gone extinct, leaving thin ice vulnerable to quick melting and battering waves from cyclones. Computer models have been terrible at dealing with the end of sea ice in the Arctic, suggesting it would stick around into the second half of this century.

Discussion – Weather and Climate Implications:

So why does loss of sea ice matter? Sea ice regulates the climate of the world in multiple ways. It acts as large white surface which reflects most of the shortwave solar radiation from the sun (high albedo). As a result, it keeps the Arctic and Northern Hemisphere (and world) cooler than otherwise. It’s wide physical presence means heat entering the Arctic Ocean goes into melting the ice in the warm season (latent heat of melting; heat goes into phase change of water from solid to liquid) instead of heating the ocean and atmosphere dramatically (sensible heat to change temperature). Losing sea ice ends its presence as a climate regulator, allowing for more abrupt warming of the atmosphere-ocean system and increasing moisture content in the atmosphere (water vapor is an additional greenhouse gas; and increased clouds may reflect some radiation, but also can limit cooling in darkness). In addition, the Arctic Ocean will warm as it is a dark surface (low albedo). Increasing ocean warming in the marginal seas of the Arctic Ocean is already leading to increased methane emissions from the shallow continental shelves (as subsea permafrost thaw the clathrates) and more rapid warming will lead to an increase in emissions of methane and carbon dioxide from land permafrost (see discussion by Arctic climate scientist Dr. Peter Wadhams of Cambridge University on YouTube). Methane is over 100 times more powerful greenhouse gas than carbon dioxide on a timescale of several years (it dissipates far faster in the atmosphere, but sudden releases can increase warming quickly). And all of these feedbacks will much more quickly destroy the sea ice extent through further warming for a longer period in the warm season until ice disappears completely.

Increased warming of the Arctic also has impacts on mid-latitude weather. There has been research suggesting that the jet stream can be strongly influenced by Arctic warming and sea ice extent (see discussion by Dr. Jennifer Francis on YouTube). This can include a weakening of the upper-level jet stream which depends on the temperature difference between the upper-level mid-latitudes and polar atmosphere (known in meteorology as “baroclinic instability”). This weakening can lead to the jet stream developing high-amplitude waves more frequently, allowing for powerful upper-level ridges of high pressure to develop and cause blocking of the progressive westerly flow. This blocking can cause more frequent stagnant weather for locations, developing droughts in some areas through prolonged dryness, long periods of heavy precipitation in other regions as well as places of very abnormally warm temps (greater extreme summer heat) vs. colder temperatures (but the warmth always significantly outpaces the cold). Increased warming of the atmosphere in general also increases rainfall rates. In addition, paradoxically, while parts of the mid-latitudes may go through below normal temps and cold weather, the powerful ridging can produce extremely abnormally warm temperatures over the Arctic regions, intensifying the warming of the far north.

An identical pattern to this has largely set up over the Northern Hemisphere November into December.

Powerful high-amplitude ridges over the Eastern Pacific and North Atlantic. Pattern relatively stagnant at this time.
Reanalysis of the average temperature of Earth and specified regions over the last 30 days (1981-2010 baseline…add 0.7 C to compare to late 19th century). Note extensive, persistent anomalous warmth of the Arctic.

These effects may overall lead to more abrupt warming of the world as a whole as well as (more importantly) changes in rainfall and snowfall patterns, relevant for crops and food security from increasing summer extremes (heat stress and heavy rainfall) and water resources (snow pack, groundwater, etc). Also relevant for forest health (destruction by increasing wildfires as well as bug infestations killing hundreds of millions of trees in the Western US). And a running theme in stories on climate change recently? “Faster than expected” or “Faster than previously thought”. The importance of Arctic sea ice cannot be overstated and, unfortunately, this major tipping point…which I would consider a “keystone” tipping point because of what effects it can have down the line on other parts of the climate system…seems to be on the brink. It has been 2.6 million years since significant sea ice did not regularly exist in the warm season in the Arctic Ocean.

The statistics of weather has already changed significantly because of global warming with far more extreme heat events, drought periods and heavy precipitation events than in the mid-20th century (see presentation by Dr. Aaron Thierry on shift to more extreme weather conditions; starts 12:30 min, recommend watching through 20:30 min; also see discussion of climate change on increasing extreme events by Dr. Stefan Rahmstorf). Going past tipping points far earlier than expected by climate models will increase the likelihood for far more extreme weather events as weather patterns and circulations change (in some cases difficult to predict ways). Clearly, the world still needs adequate mitigation and adaptation measures to deal with these rapid and possibly abrupt changes.

For more info into how climate change influenced global extreme weather events in 2016, see the latest report (issued today) by the American Meteorological Society with attribution studies on last year’s significant events.

–Meteorologist Nick Humphrey

If you like what you read and appreciate the time I put into writing on weather and climate topics, feel free to donate with PAYPAL. Every little bit helps a lot! Thank you!


Key Findings of the US Government’s Climate Science Special Report

Today, the US Global Climate Change Research Program released the Climate Science Special Report, Vol. 1 of the Fourth National Climate Assessment mandated by Congress to provide the latest scientific basis and impacts from climate change on the United States. Climate science continues to evolve, but in the direction of more significant realization of how humans have influenced the climate thus far, as well as how much more influence will come in the not to distant future.

Below are some of the headline findings provided in the rather powerful report (be prepared for a lot of INTENSE info):

    1. Earth’s average temperature has increased by 1 degree C (1.8 F) during the 1901-2016 period. This is faster than any rate known in the last 1,700 years.                 2017TempUpdate_Top10_Global_F_en_title_lg
    2. The average temperature of the contiguous United States has also increased by 1 degree C (1.8 F) during the 1901-2016 period. Satellite and surface observations are consistent in the detection of this rapid rise in temperature. With no change in the rate of greenhouse gas emissions, the CONUS is expected to experience a more abrupt average rise in temperature of 3.2-6.6 degrees C (5.8-11.9 F) between now and 2100.                                                                                 
      Change in average surface temperature (annual and seasonal) for the period 1986-2016 since the period 1901-1960 (contiguous US; 1925-1960 for Alaska and Hawaii). Data from NOAA.

      Projected changes in the coldest and warmest daily temperatures (°F) of the year in the contiguous United States. Changes are the difference between the average for mid-century (2036–2065) and the average for near-present (1976–2005) under the higher emissions scenario (RCP8.5). Maps in the top row depict the weighted multimodel mean whereas maps on the bottom row depict the mean of the three warmest models (that is, the models with the largest temperature increase). Maps are derived from 32 climate model projections that were statistically downscaled using the Localized Constructed Analogs technique. Increases are statistically significant in all areas (that is­­, more than 50% of the models show a statistically significant change, and more than 67% agree on the sign of the change). Data by NOAA.
    3. Temperature extremes in the United States are trending significantly toward record high temperatures over record low temperatures. This trend is expected to continue with the number of below freezing days also continuing to decline and days above 32 degrees C (90 F) continuing to rise.
      Data by NOAA.

      Projected changes in the number of days per year with a maximum temperature above 90°F and a minimum temperature below 32°F in the contiguous United States. Changes are the difference between the average for mid-century (2036–2065) and the average for near-present (1976–2005) under the higher scenario (RCP8.5). Maps in the top row depict the weighted multimodel mean whereas maps on the bottom row depict the mean of the three warmest models (that is, the models with the largest temperature increase). Maps are derived from 32 climate model projections that were statistically downscaled using the Localized Constructed Analogs technique. Changes are statistically significant in all areas (that is, more than 50% of the models show a statistically significant change, and more than 67% agree on the sign of the change).
    4. The global influence of natural variability is limited to small fraction of observed climate trends. Solar output and the Earth’s internal natural variability have contributed only marginally to the observed changes in the climate system over the past century. There is no convincing evidence for natural cycles in the observational record that could explain the changes in the climate system.                                                                                                                                                         
    5. Heavy precipitation events have increased across the US since 1901. The highest increase over the Northeast and the second highest increase over the Midwest.                                                                                                                                2017ClimateExtremes_Downpours_3_en_title_lg
    6. Northern Hemisphere spring snow cover, North American maximum snow depth and Western US snow-liquid equivalent have all declined since the early 20th century. At current rates of decline and assuming no change in water resource management, chronic, long-duration hydrological drought conditions are possible for portions of the United States by 2100.                                                                                                                                                                                               
    7. Global mean sea-level has risen 7-8 inches (~0.2 m) since 1900 with 3 of those inches since 1993. Relative to the year 2000 is very likely global mean sea-levels will rise up to 0.6 ft (0.18 m) by 2030, 1.2 ft (0.38 m) by 2050 and 4.3 ft (1.3 m)+ by 2100. A more rapid degradation of the West Antarctic Ice Sheet may mean physically possible sea level rise theoretically exceeding 8 ft (2.4 m) by 2100 (confidence is low on this).                                                                                                                2016StateOfClimate_SLR_en_title_lg
    8. The global ocean has absorbed more than 93% of the heat caused by global warming since the mid-20th century. The oceans have warmed by about 0.7 degrees C (1.3 F) during the 1900-2016 period. Assuming no emissions changes, warming of the oceans by an average of 2.7 degrees C (4.9 F) is expected by 2100.                                                                                                                                       2016StateOfClimate_HeatStorage_en_title_lg
    9. The global ocean continues to undergo rapid acidification because of dissolved carbon dioxide from atmospheric emissions. The rate of acidification is unparalleled in the past 66 million years (since the Cretaceous-Paleogene Impact Event). At the current rate, the pH of the global ocean may decline from its current average of 8.1 to as low as 7.8 by the end of the century. Seawater with pH <8 can be corrosive to shellfish, plankton and coral which depend on carbonate structures for their shells, backbones and skeletons. The greatest change in acidity will be in Arctic Ocean.

      Predicted change in sea surface pH in 2090–2099 relative to 1990–1999 under the higher scenario (RCP8.5), based on the Community Earth System Models–Large Ensemble Experiments CMIP5 (Figure source: adapted from Bopp et al. 2013 ).
    10. The Arctic is warming at a rate approximately twice as fast as the global average with a rapid decline in sea ice volume and extent since satellite observations began in 1979. At the current rate of warming, the Arctic Ocean will be effectively ice-free in the month of September by the 2040s.                       

      Arctic Sea Ice Volume since 1979. Note gradual and accelerating collapse of sea ice volume. Arctic may fall below 1,000 cubic kilometers at some point in the month of September in as early as several years to a decade or so. This will happen when the yearly sea ice maximum and loss of what remains equal.
    11. Global warming has contributed “significantly” to ocean-atmosphere variability in the North Atlantic Ocean; as a result these changes have contributed to the observed upward trend in North Atlantic hurricane activity since the 1970s. North Atlantic hurricanes are expected to increase in intensity (maximum sustained wind potential) with increasing precipitation rates during the 21st century.                                    2017Hurricanes_Info_en_title_lg

      Tracks of simulated Saffir–Simpson Category 4–5 tropical cyclones for (a) present-day or (b) late-21st-century conditions, based on dynamical downscaling of climate conditions from the CMIP5 multimodel ensemble (lower scenario; RCP4.5). The tropical cyclones were initially simulated using a 50-km grid global atmospheric model, but each individual tropical cyclone was re-simulated at higher resolution using the GFDL hurricane model to provide more realistic storm intensities and structure. Storm categories or intensities are shown over the lifetime of each simulated storm, according to the Saffir–Simpson scale. The categories are depicted by the track colors, varying from tropical storm (blue) to Category 5 (black; see legend). (Figure source: Knutson et al. 2015; © American Meteorological Society).
    12. Large forest fires in the Contiguous US and Alaska have increased since the early-1980s. This increase is expected to continue with “profound” impacts on ecosystems.                                                                                                                           2016Wildfires_temp_WEST_en_title_lg

Some other findings of note:

-For the period 1901-2016, the Dust Bowl Era (mid-1930s) remains the most extreme era for heat. This is thought to be largely the result of significant land-surface feedbacks caused by precipitation deficits and poor land management leading to reduced vegetation and strong surface heating (which in turn promoted further drying and land degradation). However, we are on a path to eclipse this period in US climate history in the coming decades, particularly as colder conditions (more found in 1930s winters for example) continue to decline in a warming climate and extreme heat continues to increase.

-The Climate report explains (as has been explained in previous scientific literature) the period of so-called “global cooling” which occurred from the mid-1940s to mid-1960s: aerosol particles generated by WWII and post-war industrial production (esp. coal power plants) which reflected some solar radiation into space temporarily slowing long-term global warming, even as carbon dioxide concentration in the atmosphere continued to increase.

-The report notes that annual precipitation has decreased over the West, Southwest and Southeast, while increases have occurred over the Plains, Midwest and Northeast. They specifically mention an increase in mesoscale convective systems (organized clusters of thunderstorms which dump significant rainfall) over the Plains and Midwest since 1979. Mesoscale convective systems are expected to increase in frequency and intensity during the 21st century.

-While tornado climatology related to climate change has been difficult to understand because of the reliability of storm reports before the 1990s, scientists involved in the report have concluded one interesting aspect…there is moderate confidence in a decrease in tornado days (day when tornadoes of any number are confirmed), as tornadoes are increasing on those days. Greater volatility in tornado occurrence year-to-year as well as a trend toward an earlier first occurrence during the year have been observed. Studies looking at the ingredients for severe storms with all modes of potential activity (tornadoes, hail, wind) suggest an increased frequency and intensity of severe storms over areas prone to them in the US in a warmer world, but confidence on details is low.

-This report concluded that observed drought and precipitation increases (1901-2016) cannot be confidently attributed human-induced global warming. The Dust Bowl Era remains the benchmark period for extreme drought conditions. However recent negative trends in soil moisture are believed to be attributable to warming temperatures. Although soil moisture projections in climate models are still considered in their “elementary” stages in the science, based on what is known, there appears to be a signal for further decreases in soil moisture over portions of the US (particularly West and Plains) by the end of this century, increasing the risk of chronic hydrological drought.

-I find the key finding #11 I listed particularly important. There has been much debate between scientists (particularly more observational minded meteorologists vs. climatologists) about whether there has been truly observable increase in N. Atlantic hurricane activity seasonally beyond the natural variability, given the limited period of reliable satellite record and intensity measurements. This statement is given MODERATE confidence given that global warming has caused increases in sea-surface temperatures, oceanic heat content and natural cycles on multi-annual and multidecadal time scales involve changes in not only these thermodynamic variables but also dynamic ones in response (vertical wind shear, position/intensity of monsoon troughs, development of tropical waves into organized TCs).

Additional Thoughts:

This slideshow requires JavaScript.

Climate change will likely be one of the most difficult challenges the world will face this century (at least). Why? Why should we care?

When it comes to effects on people (which is what people care about), at the end of the day, what matters for the livelihood of people rich or poor? Food, water, living space. If these become challenged, you get human suffering (from economic to health threats) and geopolitical problems. The potential for significant drying and increasing chronic hydrologic droughts from loss of snowpack will lead to increasing populations in demand for resources seriously straining water resources. Crops around the world will face increasing difficulties from heat stress, prolonged droughts mixed with periods of more intense heavy rainfall events. Acidification and warming may threaten marine food resources already strained by overfishing around the world. Living space will become slowly threatened by sea level rise in low-lying areas and island nations…and more readily in the coming decades…by repeated far more extreme heat waves than previously in already hot, humid environments where cooling is not readily available, and possibly by diseases as ecosystems shift to different places, along with pests (which will also impact crops potentially).

Climate change isn’t just about warming, it’s about cascading impacts on the whole of the climate system. Without a drastic global shift to a low-carbon energy sources and the advancement of technology to remove carbon dioxide from the atmosphere, we are in store for a very challenging period in human history. This isn’t worse-case/best case or any of this. This is simply the path that we are on, no over-dramatic statements nor downplaying needed or tolerated. Hopefully we via our governments make the right choices.

–Meteorologist Nick Humphrey