New Warming Event Coming to the Arctic This Week into Next Week

Another anomalous warming event will be underway this week into next week in the Arctic, potentially impacting the Arctic Ocean sea ice. Basin average air temperature anomalies exceeding +3-4 C (~5.5-7 F) relative to pre-industrial/anthropogenic warming which began in the 18th and 19th centuries (the baseline for these maps is very recent…1981-2010, with an acceleration in global warming occurring just during that time). The Arctic has been warming much faster than the globe as a whole (twice as fast overall, 3-4 times faster in the interior Arctic). The Arctic had its warmest winter on record in 2017-18 with what were effectively “heat wave” events generated by either huge upper-atmospheric ridges of high pressure from a very high amplitude (very wavy) jet stream producing areas of intense warming; or “atmospheric rivers” of intense heat and moisture transport via intense ocean storms moving in from the Atlantic and Pacific eroding the sea ice sheet in the middle of winter by warm temperatures, high wave action and even rainfall. The Bering-Chukchi Seas of the far northern Pacific and Arctic Oceans have been the lowest sea ice extent on record, likely going back to the mid-19th century (the earliest records can be reconstructed).
Climate change-related warming is melting sea ice rapidly, exposing more dark-blue ocean during the warm season, warming it and the atmosphere, contributing to further warming. It also has led to a weakening of the jet stream and winter time upper-atmospheric polar vortex which stabilizes the Arctic climate and upper-atmospheric circulation pattern, “vortex splitting” and much increases “waviness” in the jet stream, with increasingly extreme Northern Hemisphere winters (persistent areas of abnormal cold, warmth, with wet or dryness and very wild swings between the two states in some regions with strong mid-latitude cyclones produced by the temperature gradients). I discussed this more in a detailed post related to my personal observations of the effect the wild temperature variability has had on seasonality on the Great Plains.
For the Arctic, this new very abnormal warming period is unusual in that this is the middle of Spring and temperature variability typically decreases somewhat after winter. But the jet stream continues with its very high amplitude or “wavy” pattern. Lots of abnormal warmth across the Northern Hemisphere mid-latitudes, a couple notable cold spots, but now the Arctic will get assaulted by more heat from the warming mid-latitudes.
Mean temperature anomalies for the month of April (1981-2010 baseline).
But this will be May warmth, not the warmth of January or February. The current sea ice extent, which is around the same as 2016 (which ended the year with the second lowest September minimum on record) may begin decreasing at higher rate, particularly as a days long period of abnormal warmth hits the Central Arctic Basin, which has relatively normal sea ice extent, but record low sea ice area (which subtracts areas within the max extent which are free of sea ice). So bringing in more heat is no good. The Arctic may become ice free in the warm season over the next decade and could do so abruptly.
-Below are Global Forecast System model depictions of temperature anomalies (relative to 1981-2010) over the Arctic over the next several days as storms move over the Arctic Ocean from Siberia and the far North Atlantic. The last image is the mean temperature anomaly over the next 7 days.
Here’s what those temperature anomalies actually translate too in actual air temperatures (forecast by the American GFS model). No part of the Arctic Ocean is below zero F, with the large swath above freezing on Sunday (and earlier).
I’ll also note, I saw evidence of this warming event in long-range models mid last week…and noticed it will coincide with the beginning of an extensive period of abnormal heat over Western North America (literally from the western US to portions of Alaska), with cooler than normal conditions over the Great Lakes and eastern Canada, with abnormal heating of Europe as well. Parts of Europe have already had periods of record heat in April, including Germany.
Probability of above or below normal temperatures during the 6-10 day period (top) and 8-14 day period (bottom). Very abnormal warmth likely over much of the Western US/Canada, with high probabilities in parts of Alaska and much of the Great Plains. This will continue drought conditions for the Southwest US.
14-km EPS Global undefined undefined 60
European Ensemble Model’s ensemble mean temperature anomaly forecast for Europe valid 12 UTC May 3rd. Periods of abnormally warm temperatures appear likely across the region between now and next week.

–Meteorologist Nick Humphrey








Severe Weather Threats for Central Plains Monday-Wednesday

After a start to a 2018 tornado season which has featured numerous tornadoes across the Deep South and even scattered tornadoes out West, but not a single tornado in Nebraska, Kansas or Oklahoma, it appears near certain the tornado drought for the Great Plains will come to an end early next week. Something which as been missing thus far…pattern favorable to severe for widespread severe thunderstorms across the Central and Southern Plains…will ramp up beginning Monday across the High Plains, shift eastward Tuesday with a peak higher-end risk for more widespread severe storms Wednesday. The jet stream, the river of air separating the cold Arctic from the warmer mid-latitudes will send a major trough of low pressure over the Western US, temporarily cooling that region down, warming up the Plains, bringing in greater moisture from the Gulf of Mexico and setting up the ingredients for multiple days of severe storms.


European Model forecast depiction of trough of low pressure in the upper-atmosphere over the Western US (forecast for 7 am CDT Tuesday May 1st). This system will contribute to severe weather for the Great Plains Monday-Wednesday.

A brief review since it’s been forever since the Plains have had severe weather and there might finally be something in my neck of the woods. Severe weather is defined by the phenomena. In the US, the criteria, which weather warnings revolve around are 1) large hail of 1 inch or larger, 2) damaging wind gusts of 50 knots/58 mph or higher or 3) a tornado. Severe convection (thunderstorms) needs three major ingredients to maximize their potential. 1) Instability, 2) Moisture, 3) Wind Shear. Instability is positive buoyancy (tendency to rise). This is aided not only by heat, but also by moisture as moist air is less dense than dry air at the same temperature. Wind shear is the change in speed and direction of the wind with height. Winds which turn and increase in speed rapidly with height can promote storm rotation, allow them to form isolated cellular structures called supercells. These can be long-lived, self-maintained and produce the most intense severe weather.

Schematic of a classic supercell thunderstorm.

Of the three days I’m most concerned about for severe weather this week, Wednesday appears to be the most serious for the Central/Southern Plains for significant severe weather. But let’s take a quick look at all three days.

Monday, April 30th-


The National Weather Service Storm Prediction Center has a Slight Risk of severe weather (2/5 on the scale) for much of the high plains from Texas through Kansas and then, extending farther eastward into Central/NE Nebraska into SE South Dakota. This covers a 15% chance of severe thunderstorms within 25 miles of a point. A more “Marginal Risk” exists surrounding it. This would be for the afternoon and evening hours as a weak disturbance moves out of the Rockies, increasing wind shear and temperature-based instability (upper-atmosphere cooling relative to warming near the surface…warm air rises into colder air) modestly for isolated severe weather. Large hail and damaging winds are the primary hazards, but moisture will be limited, keeping the event from being widespread.

Tuesday, May 1st-

day4prob (1)

Beyond Day 3, there are now categorical outlooks, only probabilities. A 15% chance of severe thunderstorms within 25 miles of a point exists over Eastern Nebraska, Western Iowa, much of northern and Central Kansas into Western Oklahoma. This will likely be a bit more vigorous event from Monday, with the Tuesday disturbance being stronger with better shear profiles, more low level moisture available, and the combination of abnormally warm temperatures and higher moisture will mean higher atmospheric instability for tall, intense thunderstorms with strong updrafts. The storms will likely begin as supercells across Nebraska and Kansas before merging in the evening into an organized structure known as a “mesoscale convective system”. Basically a larger scale complex which can bring locally heavy rain and extensive damaging wind gusts. The initial storms will form along a cold front and threaten damaging winds, large hail and an isolated tornado.

Wednesday, May 2nd-

day5prob (1)

Wednesday is currently the most serious day for severe weather, but some uncertainty still exists. A 30% chance of severe thunderstorms within 25 miles of a point exists from extreme SE Nebraska, across much of Kansas, into western and central Oklahoma. A greater 15% area extends beyond  that, including my area of Lincoln, NE. Wednesday, the main upper-level trough of low pressure over the West (seen in the above map) begins to shift eastward and a surface mid-latitude cyclone sets up over the central and southern  Plains. A dryline (boundary separating warm, moist air from the Gulf of Mexico to the east from dry desert air from the Southwest US) will be located north-south somewhere over central KS/OK with a warm front either over Southeast Nebraska or Northeast KS (this is in question). The ingredients overall suggest robust thunderstorms forming along the dryline and near the area of low pressure (at the the intersection of the dryline and warm front) either in the afternoon or early evening Wednesday which vigorous supercells capable of producing large hail, some significant, damaging winds and multiple tornadoes. A possibility exists for a few of the tornadoes to be strong (EF2+; see more about the Enhanced Fujita Scale) and because of the persistent upper-level dynamics and buoyancy, storms could last after dark, posing nocturnal hazards. Later, storms will eventually merge producing greater high wind and heavy rain threats. Isolated flash flooding could be an issue Wednesday night from any heavy rain events.

For me personally, the the greatest threat for severe weather Wednesday seems to be to my south, but given the lead time, I’m watching to see how the position of the warm front ends up. If it migrates northward in the forecast and my areas is more solidly in the “warm sector”, then we will be just under as much of a hazard as the current 30% area is now. However, I note from forecast experience that warm fronts in severe storm events are notoriously challenging to forecast for as even the day of the event as they can have difficulty moving as far northward as expected because of the cold air they must erode out ahead of them. Much can also depend on the storms the previous day and how they effect the overall regional environment (temperature profiles, areas of instability, position of fronts, etc). But Monday-Wednesday all have potential to be hazardous days with Wednesday being a more potentially significant tornado day after months of silence.

9-km ECMWF USA Surface undefined undefined 108
European Model forecast depiction of Precipitable Water at 7 pm CDT Wednesday (how much atmospheric moisture is available for precipitation in an instantaneous moment). This does not say how much will fall, but just how moisture laden the atmospheric column is. The plume of abnormally high PW will mean the potential for storms with locally heavy rainfall.
9-km ECMWF USA Surface Nebraska 2-m Dew Point 114
European Model forecast depiction of dew point temperature at 1 am CDT Thursday May 3rd. Dew point is a measure of atmospheric moisture. The air behind the warm front and ahead of the dry line is warm and moist (with dew points above 60 F at this time), while the air ahead of the warm front is cool, with less moisture. The air behind the dry line is extremely dry and warm (dew point temperatures in the teens and 20s F).
9-km ECMWF Global Wave United States Simulated WV Satellite 108
European Model forecast simulated upper-atmospheric water vapor imagery for 7 pm CDT Wednesday. The computer model simulates what the weather satellite water vapor channel may see Wednesday night as far as cloud structures. Water vapor imagery is a special type of infrared imagery where water vapor concentration in the upper atmosphere can be detected based on its “brightness temperature” (upper atmosphere is moist, it appears bright, upper atmosphere is dry, it appears dark, meaning water vapor is warm, located at lower level of the atmosphere). Here, the water vapor imagery is enhanced with colors to better interpret the temperature of the condensed water (clouds). We can see intense thunderstorm formation over Kansas at this time (likely supercells) with some further development into Oklahoma as well. This is NOT LIKELY how it will look exactly Wednesday evening, only a general idea of the storm structures based on the larger-scale flow pattern and expected ingredients for storm formation.

So stay tuned early next week. The weather will definitely be news yet again this Spring! Stay safe and be ready this week in these regions!

–Meteorologist Nick Humphrey

The Struggle of the Trees in the era of increasing extremes

As the Arctic continues to warm abruptly because of anthropogenic climate change, the jet stream is exhibiting increasingly high amplitude waves later into the Spring growing season. This has been an apparent pattern through recent decades, but has become more pronounced in recent years. You can learn more about the research of Arctic amplification and the jet stream HERE (Dr. Jennifer Francis) and a more real-time analysis at the time HERE (January 2018; Paul Beckwith). Climate change is becoming abrupt enough, its changes on weather, long-term climate patterns and biology can be seen on yearly to seasonal timescales, where before, changes were over decades. So fast, scientific research can barely keep up and every story has “[faster, bigger, worse, more, etc] than expected”. Been the dizzying mantra of late-2017 into 2018 actually. It’s been rough on early agricultural activities in North America and Europe and it’s also been hard on trees trying to get started on first leaf growth.

Here in Lincoln, NE, the trees the week of April 24th have been struggling to get started with leaf growth. Lilacs are running 16-20 days behind first leaves because it has simply been too cold. We’ve had a few more warm days, recently, but yesterday and today…more chill.


Here’s a photo of my son from this time a year ago. Notice the trees.


Here’s from a walk I took on Monday.




Seeing so many leaf-less trees with only some trying to bud has left me with a weird spooky feeling going for walks. And on Monday, walking down the street for thirty blocks (longest walk I’ve done in awhile) was actually hot because of the lack of shade from any leaves. And if you want to know just what stresses these trees have been through, it’s not just about persistent chill over the course of weeks. Very extreme temperature variability as well.

-April 13th. High temperature 82 F after the passage of a strong warm front associated with the powerful midlatitude cyclone which produced blizzard conditions across the Northern Plains and severe weather in the Deep South that week/weekend.


April 14th. Twenty-four hours later. Non-diurnal temperature drop from April 13th’s high to 32 F following the passage of a powerful cold front. This was the most extreme temperature change I’ve ever experienced at the same location (and this photo is from the same parking lot as above, looking in the opposite direction). I’ve lived in Seattle, WA, Lincoln, NE and Brookings, SD. 50 degree F temperature drop. From early-June to early-February weather conditions.


Other locations, such as in Oklahoma experienced temperature changes last week of 50-60+ degrees in 10 hours (near freezing to around 100 degrees)!!

More persistent warming and less temperature variability is expected this weekend into next week. It may finally start to feel like Spring where I am. Severe weather looks possible to impact the Southern Plains next Tuesday and Wednesday. One oddity of note are no tornadoes reported so far in Nebraska, Kansas, or Oklahoma in 2018. Nebraska typically averages (1991-2010) six tornadoes during the January-April period, with Kansas and Oklahoma averaging 17 tornadoes. But so far…zero for all three states. Nebraska has been too cold and Kansas and Oklahoma have either been too cold and dry with occasional extreme heat (by April standards…again, 90s to  near 100 in the arid drought areas). Extreme to exceptional drought conditions with little rain (and obviously few thunderstorms) have been plaguing the Southern Plains for months. Some storms in May may decrease in intensity of the drought mildly, but very destructive drought conditions for agriculture and hydrology will continue across the Southern Plains and Southwest US. Hoping it will not spread north into Nebraska, but abnormally warm conditions are expected across the southern half of the Plains this summer. Harsh on the plants and crops going from long cold to a long, hot summer. Not to mention more monster wildfires and dust storms. Oklahoma suffered unbelievable wildfires last week.

Wildfires which were ongoing the afternoon of April 17th in SE Colorado, Western Oklahoma, and the Texas Panhandle.
A dust storm captured by satellite over drought-stricken eastern Colorado and western Kansas the afternoon of April 17th.

Check out this extensive (of what at the time was live) video on April 17th of the wildfires in Western OK as they were being chased by KFOR (Oklahoma City) reporters Val and Amy Castor. It’s 3 hrs worth of video, but it’s a Facebook video, easy to fast-forward through and you can see how bad the fires were as they happened.


As mentioned, severe weather may escalate on the Southern Plains (at least Oklahoma and North Texas) next week. Nebraska has been fairly quiet on the severe storm front, but with the clmatological peak months coming (May/June), there will likely be an escalation of activity. Still remains how much more activity there will actually be. While one needs wave action in the polar jet stream to stimulate the movement of warm-moist air from the Gulf of Mexico and vertical wind shear needed for rotating thunderstorms, very pronounced troughs right over the Plains with large ridging extending into Western Canada can mean cool air intrusions to the east and much of the severe weather and heavier rainfall restricted to the southeastern Plains and Southeast as has been the case much of the winter. The now weakening La Nina pattern of the El-Nino Southern Oscillation has been partly to blame for this (as well as other randomly oscillating “teleconnection” patterns”). However, in addition, the intense climate change-induced Arctic heatwaves in this winter’s polar night (climatologically extreme heat, record low ice extents, ‘atmospheric rivers’ of heat and moisture and ocean storms in the Arctic Ocean) caused the wintertime stratospheric polar vortex maintaining the circulation around the Arctic to split. This has become increasingly consistent and more intense in its effect on the Arctic and mid-latitudes the past few winters. This produced very wavy jet stream patterns and areas of abnormally very cold conditions over Europe and the Central US as well as the repeated nor’easter pattern offshore the East Coast in March.

-Splitting and migration of the winter polar vortex in the stratosphere (10 millibar pressure surface, so lines are lines of equal height…above 33,000 ft in the mid-latitudes generally).


This slideshow requires JavaScript.

There are signs in the long-range ensemble models that a highly amplified high pressure ridge build over Western North America late next week into early the following week, providing persistent abnormal heat and of course dry conditions. This would consistent with a pronounced positive phase of the Pacific-North American Pattern (PNA) which features abnormally high mid-atmospheric pressures and surface temperatures over western North America. Such a pattern would also decrease severe storm and rainfall potential on much of the Plains during the second week of May. While severe storms are never a positive for safety, the rainfall from convection is always a plus for keeping drought conditions at bay and the northern Plains are in need of regular rainfall as many places not in drought are still suffering precipitation deficits on the month and/or year. If Arctic sea ice retreats rapidly this melt season (and we’re within years of sea ice disappearing in the warm season), this may promote very amplified upper-level high pressure systems this summer as the low albedo (reflectivity) of exposed dark ocean warms the lower atmospheric column, causing thermal expansion and causing any upper-level high pressure systems overhead to respond with greater poleward amplification and strengthening. This could mean very anomalous heat and dry conditions in the summer which persist. This possibility seems focused on the West, although unusually high heat and continued extensive drought may impact the Southern Plains, depending on how the pattern regime sets up. Very important for agriculture this season which I’ll be watching. California, in particular, seems to be progressing into the climate change-induced “weather whiplash” pattern of extreme drought-rainfall, which will only worsen in the coming years. Intensifying drought this summer and the possible return of El Nino later this fall (still up in the air on that) could cause more of this. Lots to keep track of this year.

—Meteorologist Nick Humphrey

High Amplitude Jet Stream Pattern To Lead to Extremely Abnormal Temps for Central/Eastern US; “Blow Torch” Heat to Arctic.

The US will be a land of extremes as a high amplitude jet stream…the story of this winter continues to impact the US as very abnormally cold temperatures impact the Central US and (later) the Great Lakes region, with very abnormal heat spreading northward into the Eastern third of the country mid-week. Sunday, much of the Great Plains were experiencing temperatures 20-25 degrees F above normal (~10-12 degrees C). As the week progresses, the jet stream amplitude over North America will intensify and bring highs of 30 degrees F (15+ C) or greater above normal mid-week to the Ohio and Tennessee Valleys into the mid-Atlantic and New England states. This means mid-Spring highs on the East Coast and a resumption of well below freezing temps over the Central and Northern Plains.

This slideshow requires JavaScript.

In addition to the abnormal temperatures, another major story will be potentially heavy rainfall across a wide swath of the Midwest and Deep South ahead of the accompanying cold front which will push eastward mid-week. Abundant moisture from the Gulf of Mexico will aid in the generation of rainfall, some of which will help short term drought conditions, but could also produce flash flooding.

Moderate risk of flash flooding over portion of Texas, Oklahoma, much of Arkansas and southern Missouri Tuesday.
Tuesday evening forecast surface map showing widespread moderate to heavy rainfall likely from Texas to Michigan.

The Arctic Ocean has been experiencing an extraordinarily warm winter with consistent high heat to the region (relative to regional norms). As a result, sea ice has been suffering severely as the combination of high amplitude high pressure ridging and ocean cyclones push heat, wave action and wind into the sea ice sheet, along with very abnormal sea surface temperature right up against the sea ice (9-18 degrees F/5-10 degrees C above normal). Sea ice extent is currently running at the lowest on record in the history of human civilization, rapid melting already in progress in the northern Bering Sea, and 2017 annual sea ice volume was the lowest on record. The current max extent this season occurred on February 6th. The current earliest maximum peak extent is February 25th in 2015. The current record year for record minimum peak extent is 2017…2018 is currently beating that record and has the 2nd lowest year-to-date volume as well.


The sea ice is showing some signs of refreezing after its early February peak. However, more extreme heat is to come as more storms from both the Bering Sea and the North Atlantic advance heat and moisture into the Arctic Ocean this week. One storm will move over far Eastern Siberia and into the Chukchi Sea on Tuesday. Wednesday, another, stronger storm will approach Greenland, moving over the Canadian Archipelago Thursday, slowly shifting toward the Beaufort Sea Friday.


Note the last two sea level pressure images for 2/23 and 2/24. Not only the strength of the cyclone (in blue) but the tightly packed lines of equal pressure (isobars) between the low pressure system and the strong high pressure system over the Barents Sea, north of Scandinavia. These tightly packed isobars represent a very strong pressure gradient which will result in very strong southerly wind gusts (near hurricane-force) and intense wave action striking the sea ice sheet of the Arctic Ocean mid to late week. This in combination with the very warm, moist air moving into the region will make for a “blow torch” of heat from the Atlantic, eroding the cold conditions of the Arctic, stunting the freeze season further. This will likely lead to further ceasing or recession of sea ice as well.

GFS forecast high temperature for Thursday, showing above freezing temperatures penetrating into the deep Arctic. This may continue into Friday. Today through Tuesday will feature near or above freezing temperatures moving out of the Bering Sea into the southern Chukchi Sea as well.

I’ve been tracking the Arctic all season and there has been a shocking level of persistent warmth in the region with 2-3 degrees C above normal temps (for the region) being quite common many more extreme day higher than that. The Arctic Ocean basin may experience, as a region, anomalous temperatures of an incredible 6-8 degrees C above normal Tuesday-Saturday. This is relative to the 1981-2010 average. However, as climate change is abruptly warming the Arctic region, leading to rapid sea ice loss compared to the past, relative to the late 19th and mid 18th centuries (in the early era of human generated climate change), the anomalies are likely 0.7 or 1  degree C higher than that, respectively.

GFS Anomalous temperature forecasts for the Arctic region valid 00 UTC Feb 23rd. Extreme heat by regional standards over the Arctic for much of the week.

The implications for the collapse of sea ice are quite serious. The sea ice sheet regulates the jet stream by making the Arctic region permanently cold across a wide area. As long it it remains permanent with only modest seasonal melt, it can behave much like a continental ice sheet would behave on the atmosphere (like in Antarctica). The jet stream exists because the Arctic atmosphere is cold throughout the vertical column. The strong temperature gradient with the mid-latitudes is what makes it exist. But with abrupt warming of the Arctic caused by the collapsing ice sheet (which feeds back on accelerating such a collapse), this weakens the jet stream and has been causing it to become wavier with increasingly more extreme and frequent high amplitude patterns (which feedback and melt the Arctic more). Such research has been conducted by scientists such as Dr. Jennifer Francis of Rutgers University and others, showing the jet stream slowing and becoming higher in amplitude since the 1960s. Such abrupt warming also leads events such as “sudden stratospheric warming” and “splitting” of the polar vortex, supporting Arctic blasts to the south and abundant heat transport to the Arctic.

If the ice sheet collapses completely (no more in summer, low to little meaningful extent in the polar night), you get even more abrupt warming of the sea surface from below and above through collapse of the ocean thermocline (persistently cold water “cap” atop somewhat warmer water) and air temperature inversion (warmer air atop cold surface air) as well as from the much reduced albedo (white, reflective surface). The warming atmospheric column with height further reduces the temperature gradient with the mid-latitudes, weakening the jet further and causing more extreme “wave action”, greater blocking patterns as you get these big waves and little eastward progression of systems and the polar jet actually retreats farther north. This can dramatically shift precipitation patterns northward could cause much hotter, drier conditions in the mid-latitudes. It’s been a major concern for a long time in in climate change science, but a process thought to be of concern in the “high emissions” scenarios of the mid to late 21st century as increasing aridity across the mid-latitudes would destroy forests and not allow crops to be grown where they are currently grown because of increasing extreme heat (or storms). So this would have impacts not only in the Arctic, but also in the mid-latitudes. Unfortunately, a recent phrase has been increasing use the past few years. “Faster than expected”. Some prominent researchers openly admit an ice-free Arctic may be possible before 2020. See also HERE.

I’ll have more on the situation in the Arctic this week as well as the heavy rainfall in the US. Also, keep an eye on Tropical Storm Gita approaching New Zealand to start the week!

–Meteorologist Nick Humphrey

Effect of Sun-Mon Arctic Ocean Storm on Sea Ice

You may remember I posted last Friday about the major North Atlantic storm which was expected to move into the Arctic Ocean Sunday and Monday producing hurricane-force winds, 30 ft+ waves and temperatures over 40 degrees F above normal (near or even above freezing in places). Well that storm advanced through the Arctic and now noticeable effects can be seen (via satellite analysis) on sea ice concentration (amount of ice vs. open water in a given area) and on sea ice sheet growth and resulting extent.

North Atlantic Surface Analysis valid at 06 UTC February 5th (midnight CST) showing the 958 millibar low pressure system off shore northeast Greenland entering the Arctic Ocean from the North Atlantic basin. (US National Weather Service)
Global Forecast System model analysis valid 12 UTC February 5th (6 am CST). This shows the very strong sustained winds and (by Arctic standards north of 80N) extremely warm temperatures during the height of the storm. This was thanks to very strong warm air advection from the Atlantic Ocean. The system had a sub-tropical connection with heat and moisture originating from the subtropical western Atlantic. Average temperatures in many places should be -30 to -15 F (-34 to -26 C). (

Included are two images of the sea ice concentration…one I saved from the February 3rd, another just posted for February 6th. Lighter blues are for 90-95% concentration, with yellows and reds being for 75-90%.

This slideshow requires JavaScript.

Extent growth basically stopped between February 3-6 (near 13,300,000 sq km for four days).

2018 year-to-date extent (currently at record lows) vs 2016 extent (previous daily record lows for this time of year) and the 1980s average. Sea ice extent and volume collapse is underway in the Arctic Ocean because of Anthropogenic Climate Change caused by abrupt warming in the Arctic (notable since the 1980s, accelerating since the 2000s). 

More very above normal temperatures will hit the Arctic this weekend as a powerful blocking high pressure system over the Pacific (sound familiar…) raises temps once again across Alaska and allows storm tracks to head for the Bering Strait and Chukchi Sea once again. Meanwhile, the Atlantic side will continue to remain “open” with another storm also moving into the region this weekend. No storm appears to be nearly as powerful as the Sunday-Monday event, but the litany of systems bringing at least some wind, wave action and temps not far below the freezing point of salt water is no good for the Arctic.

Temperature anomaly (degrees above or below average) forecast by the GFS model for the Arctic region valid 18 UTC February 10th (noon CST). Normal is based on 1981-2010 baseline. To approximate the major effect of anthropogenic climate change since the end of the 18th century add +0.9 degrees C (K).
GFS maximum temperature forecast valid 18 UTC February 10th (noon CST). Very warm air temperatures on both the Atlantic and Pacific entrances to the Arctic Ocean.

Arctic sea ice is extremely important for everything from Arctic regional ecology, marine biology to effects on overall warming of the Arctic Ocean and surrounding land areas (and permafrost). There is also evidence that the rapid warming of the Arctic because of anthropogenic climate change is altering the polar jet stream circulation which may be leading to an increased frequency and magnitude of extreme weather events. 

Sea ice thickness and thickness anomalies in January 2018. (Zach Labe)

–Meteorologist Nick Humphrey



Discussion of Final Analysis of 2017 Hurricane Harvey

The 2017 North Atlantic Hurricane season was a devastating one in terms of loss of life as well as property damage for the United States and the Caribbean. The National Hurricane Center released its post-season report on Harvey which caused great destruction to parts of Southeast Texas and Southwest Louisiana. What follows is a brief summary and discussion of Harvey based on info from that report as well as other sources related to Harvey’s impacts. The full report is linked at the end of this post in the references.

Meteorological Discussion

What became Harvey was originally a tropical disturbance which came off the West Coast of Africa on August 12th. It is common during August and September for land-based thunderstorm complexes known as mesoscale convective systems to move westward off the African coast near or south of the Cape Verde (also known as the Cabo Verde) Islands and later develop into long-lived tropical cyclones. Harvey was a classic “cape-verde” type storm as it would later develop into a tropical depression with a well-defined center on August 16th.

The depression intensified into a storm and given its name 12 hrs after initial development. It peaked over the open Atlantic at 40 knots (~45 mph), moving over the islands of Barbados and St. Vincent on August 18th. However, increasing vertical wind shear (increasing winds with height tilting and blowing the thunderstorms away from the low pressure center) over the central Caribbean Sea lead to Harvey’s dissipation to a remnant low later that day.

Harvey moving over Barbados and St. Vincent on August 18, 2017.

The remnant circulation moved over the Yucatan Peninsula on Aug 22nd and redeveloped into a tropical depression over Bay of Campeche on August 23rd, 150 n mi west of Progreso, Yucatan, Mexico.

The initially poor organization of the reformed Harvey transitioned to a period of rapid intensification late on the 23rd as deep convection began to concentrate near the center. This was aided by an environment of light shear, very warm sea surface temperatures and high mid-level moisture. Intensification would continue until landfall on the 26th. Harvey reached Category 3 midday on the 25th and intensified into a Category 4 as it made its landfalls on the Texas coast early August 26th (the evening of the 25th local time). The initial landfall was on San Jose Island, TX as a Category 4 with maximum sustained winds of 130 mph (115 knots) with a second landfall on mainland Texas in northeast Copano Bay as a Category 3 with maximum sustained winds of 120 mph (105 knots). Wind damage was extreme and devastating in Aransas, Nueces, Refugio and the eastern part of San Patricio Counties. 15,000 homes were destroyed and 25,000 homes damaged. The City of Rockport was hit the hardest as the Category 3+ wind field moved into that area causing both extensive wind and surge impacts. The highest surge observed in Harvey was generally in the range of 9-11 ft.

Hurricane Harvey approaching landfall on the Texas Coast the evening of August 25, 2017 (local time).
Hurricane Harvey making landfall in Texas as seen by radar. Note the “lumpy”, wavy undulations within the eye (such as near Rockport and north of Port Aransas in this image). These are mesovortices where winds may have been locally stronger within the inner eye wall of the hurricane.

Harvey meandered in light steering currents, “stuck” between a mid-tropospheric high pressure system over the Four Corners states and another mid-troposphere high over the Gulf of Mexico. Torrential rains fell over Houston Metro and the Golden Triangle near a stationary front which formed on the north and east side of Harvey.


This slideshow requires JavaScript.

The rainfall of Harvey was truly incredible. A storm total of 60.58 inches was confirmed Nederland, TX; 60.54 inches in Groves, TX. Much of the heaviest precipitation fell in the first 72 hrs of the event. Previous continental US record for a tropical cyclone is 48 inches in Medina, TX (1978). The extreme nature of Harvey was displayed in that 18 values over that continental record of 48 inches reported across southeastern TX, with 36-48 inches recorded across the Houston metro area. However, Multi-Sensor Precipitation Estimates (MPE), which includes radar-derived rainfall intensity estimates suggests 65-70 inches where few observations were available or observations failed early in the event. Maximum rainfall measured in Louisiana was 23.71 inches in Vinton, LA, with MPE suggesting a more representative 40 inches as Southeast Southwest LA obs were sparse.

By Jordan Tessler for Capitol Weather Gang.



The large-scale or synoptic set up for the Harvey exceptional rainfall event is not particularly unique. Heavy rain bands formed along a modest frontal boundary situated initially near Houston, then the Golden Triangle region in Southeast TX (Beaumont, Port Arthur, Orange, TX area). Enhanced convergence and convective lift with warm cloud droplet precipitation processes allowed for enhanced rainfall rates in abundant thunderstorms. The combination of extremely high rainfall rates of up to 5-7 inches per hour and the stationary nature of the near coastal frontal boundary and Harvey itself contributed to the extreme total accumulation and massive flooding.

Training rain bands moving over the Houston Metro area the morning of August 27, 2017.
Very heavy rainfall in the Golden Triangle region of east TX the early morning of August 30, 2017.

NOAA analysis determined that areas of Southeast TX experience a flood with an annual probability of <0.1% (equivalent to a >1000 year flood event). I believe this is one of the most important parts of the National Hurricane Center report, so I’ll quote it:

While established records of this nature are not kept, given the exceptional exceedance probabilities, it is unlikely the United States has ever seen such a sizable area of excessive tropical cyclone rainfall totals as it did from Harvey.

Mesoscale Precipitation Discussion by the National Weather Service – Weather Prediction Center on August 27, 2017. Historic, devastating flooding underway in the Houston Metro Area at the time.

In addition to storm surge, wind and flooding rains, Harvey produced 57 tornadoes (many in the Houston Metro area) and killed 68 people directly with an additional 35 indirect deaths. All direct deaths were in Texas and it was the deadliest tropical cyclone for Texas since 1919. All but three direct deaths were caused by freshwater flooding.

According to NOAA, preliminary damage analysis suggests estimated damages of $125 billion, making Harvey the second-costliest hurricane on record in the North Atlantic basin, only behind Hurricane Katrina, when adjusted for inflation.

Connection to Anthropogenic (human-caused) Climate Change

During and immediately following the events of Hurricane Harvey, there was intense controversy over even discussing climate change as it related to the extreme events related to Hurricane Harvey. Even mentioning climate change in reference to an individual extreme weather event. A lot of opinions were thrown about, but the science of climate change has evolved dramatically in the past 10 years and climate researchers have a much better understanding of many of the connections between climate variables and the statistics of weather which make up the recent past and current climate. From this, attribution studies can be conducted to determine a likelihood of connection to the changing climate regime. A attribution study was done by World Weather Attribution (#2 below) and the probabilistic statistical analysis determined that the record rainfall from Harvey was approximately a) 3 times more likely and b) 15% more intense in terms of rainfall rate because of climate change. One location witnessed a return period for extreme rainfall of 9000 years with a high degree of statistical confidence. The impacts were consistent with what would be expected with 1 degree C+ of global warming since the late 19th century (the world has thought to have begun warming because of humanity since the mid 18th century). I did an extensive post previously during this most recent hurricane season on the climate change connection with includes references to numerous recent peer reviewed papers HERE.



#1 – Harvey Report (National Hurricane Center, 2018)

#2 – Oldenborogh et al. 2017

See my previous posts in this blog on Hurricane Harvey from last August HERE.

–Meteorologist Nick Humphrey