Arctic Sea Ice Extent Rapidly Decreasing Because of Climate Change; Weather & Climate Implications

Today, NOAA presented the State of the Arctic report at the American Geophysical Union annual conference in New Orleans. The news from the report was devastating for potential weather and climate impacts. Lots of important info to talk about from this! Let’s summarize:

  1. Annual Arctic sea ice extent is the lowest in 1600 years. This is based on proxy data (tree rings, lake sediments, ice cores from the Greenland Ice Sheet). There has been an abrupt decrease in extent during the 20th century (continuing to present). 24991395_10215050817330895_108575701643656859_n
  2. Arctic sea ice extent reached a record minimum in the warm season in 2012. However, 2015-17 witnessed consecutive record low maximum extents in the cold season. 2016 also had the lowest extent on record in November or December. 2017 is also witnessing top two or three low daily extents in November into December, with record low sea ice in the northern Bering Sea and the Chukchi Sea (north of the Bering Strait between Alaska and Russia). Also very notable, sea ice VOLUME (which includes thickness of ice) has continued to suffer with 2015-17 in the top 4 for the lowest volume on record going back to 1979 (and based on decreasing of sea ice extent and thickness, likely much much longer than that). Multi-year ice…ice more than a year old…is now nearly extinct in the Arctic Ocean.

    siv_annual_max_loss_and_ice_remaining
    Arctic Sea Ice Volume since 1979. Note consistent and accelerating collapse of sea ice volume. Arctic ice volume may fall below the 2012 record at some point in the month of September in the next several years.
  3. The Arctic had its warmest year on record in 2016 and its second warmest year on record in 2017 in reliable records. The climate of the Arctic is warming to the point that permafrost is increasingly melting releasing methane and carbon dioxide, methane emissions from what are called methane hydrates (methane gas locked in water ice) are increasing from the very shallow continental shelves surrounding the Arctic Ocean and mid-latitude weather patterns are becoming altered because of reduced sea ice (more on this shortly). The Arctic tundra is also greening at an increasing rate because of rapid warming.
  4. NOAA specifically states that “the Arctic shows no signs of returning to a reliably frozen region of recent decades” because of continued climate change related warming.

Discussion – Leaving the Ice Age Era:

One thing that we must remember about the sea ice of the Arctic Ocean (and the Southern Ocean around Antarctica) is that sea ice is a product of Ice Age eras. Our planet has had a tendency historically to flip between two global climate equilibrium states with dramatically different regional weather and seasonal patterns. The Ice Ages and the Hot House “Jurrasic Park” climates have been the two long-term dominating climate regimes in Earth’s history. One characterized by huge ice sheets and low sea levels, the other characterized by no ice sheets, no sea ice and high sea levels. Human civilization has flourished in the latest interglacial period in the Ice Age era because the climate has remained largely stable for roughly 10,000 years (-1 to +0.5 degrees C relative to mid-20th century climate) and mild enough to for extensive agriculture and settlements.

a-2.earth_temperature_record
Estimated temperature of Planet Earth from 550 million years ago to the end of the 20th century.

But now, because of Anthropogenic Global Warming (AGW) from climate change, we are leaving that stability in the geologic blink of an eye.

globalwarming_projected.jpg.CROP.original-original
Projected rise in global temperature of 4 degrees C/8 degrees F (relative to mid-20th century) during the 21st century relative to the past 10,000 years.

Probably the most important regulars of climate during Interglacials are the “refrigerators” of the north and south…the Arctic Ocean sea ice and Antarctic Ice Sheet (also Greenland Ice Sheet). However, as temperatures warm because of human carbon dioxide emissions trapping heat in the global climate system, that heat warms the atmosphere and ocean, attacking the sea ice by providing excess latent heat of melting. For the Arctic, this reduces the sea ice extent and volume decade after decade. Eventually, it will get to a point, where sea ice will become so thin and tenuous, it will undergo collapse to what has been called a “blue ocean” event with 1,000,000 sq km or less ice at a minimum in September (2012 extent minimum record was 3.41 million sq km). The 2016 and 2017 extent minimums were in the top 10 with 4.14 and 4.64 million sq km, 2nd and 8th respectively. 8 of the top 10 warm season minimum extents (in km) have occurred since 2010 in the now 39 year record. The Arctic Ocean and lower atmosphere are warming and becoming more like the high latitude North Atlantic. Eventually sea ice is expected to disappear completely in the warm season in the Arctic. Some climate scientists have suggested over the past several years that the “blue ocean” event resulting from a collapse of sea ice extent could occur between 2015-2020 or so as multi-year ice has nearly gone extinct, leaving thin ice vulnerable to quick melting and battering waves from cyclones. Computer models have been terrible at dealing with the end of sea ice in the Arctic, suggesting it would stick around into the second half of this century.

Discussion – Weather and Climate Implications:

So why does loss of sea ice matter? Sea ice regulates the climate of the world in multiple ways. It acts as large white surface which reflects most of the shortwave solar radiation from the sun (high albedo). As a result, it keeps the Arctic and Northern Hemisphere (and world) cooler than otherwise. It’s wide physical presence means heat entering the Arctic Ocean goes into melting the ice in the warm season (latent heat of melting; heat goes into phase change of water from solid to liquid) instead of heating the ocean and atmosphere dramatically (sensible heat to change temperature). Losing sea ice ends its presence as a climate regulator, allowing for more abrupt warming of the atmosphere-ocean system and increasing moisture content in the atmosphere (water vapor is an additional greenhouse gas; and increased clouds may reflect some radiation, but also can limit cooling in darkness). In addition, the Arctic Ocean will warm as it is a dark surface (low albedo). Increasing ocean warming in the marginal seas of the Arctic Ocean is already leading to increased methane emissions from the shallow continental shelves (as subsea permafrost thaw the clathrates) and more rapid warming will lead to an increase in emissions of methane and carbon dioxide from land permafrost (see discussion by Arctic climate scientist Dr. Peter Wadhams of Cambridge University on YouTube). Methane is over 100 times more powerful greenhouse gas than carbon dioxide on a timescale of several years (it dissipates far faster in the atmosphere, but sudden releases can increase warming quickly). And all of these feedbacks will much more quickly destroy the sea ice extent through further warming for a longer period in the warm season until ice disappears completely.

Increased warming of the Arctic also has impacts on mid-latitude weather. There has been research suggesting that the jet stream can be strongly influenced by Arctic warming and sea ice extent (see discussion by Dr. Jennifer Francis on YouTube). This can include a weakening of the upper-level jet stream which depends on the temperature difference between the upper-level mid-latitudes and polar atmosphere (known in meteorology as “baroclinic instability”). This weakening can lead to the jet stream developing high-amplitude waves more frequently, allowing for powerful upper-level ridges of high pressure to develop and cause blocking of the progressive westerly flow. This blocking can cause more frequent stagnant weather for locations, developing droughts in some areas through prolonged dryness, long periods of heavy precipitation in other regions as well as places of very abnormally warm temps (greater extreme summer heat) vs. colder temperatures (but the warmth always significantly outpaces the cold). Increased warming of the atmosphere in general also increases rainfall rates. In addition, paradoxically, while parts of the mid-latitudes may go through below normal temps and cold weather, the powerful ridging can produce extremely abnormally warm temperatures over the Arctic regions, intensifying the warming of the far north.

An identical pattern to this has largely set up over the Northern Hemisphere November into December.

us_model-en-087-0_modez_2017121312_24_5477_449
Powerful high-amplitude ridges over the Eastern Pacific and North Atlantic. Pattern relatively stagnant at this time.
ANOM2m_past30_equir
Reanalysis of the average temperature of Earth and specified regions over the last 30 days (1981-2010 baseline…add 0.7 C to compare to late 19th century). Note extensive, persistent anomalous warmth of the Arctic.

These effects may overall lead to more abrupt warming of the world as a whole as well as (more importantly) changes in rainfall and snowfall patterns, relevant for crops and food security from increasing summer extremes (heat stress and heavy rainfall) and water resources (snow pack, groundwater, etc). Also relevant for forest health (destruction by increasing wildfires as well as bug infestations killing hundreds of millions of trees in the Western US). And a running theme in stories on climate change recently? “Faster than expected” or “Faster than previously thought”. The importance of Arctic sea ice cannot be overstated and, unfortunately, this major tipping point…which I would consider a “keystone” tipping point because of what effects it can have down the line on other parts of the climate system…seems to be on the brink. It has been 2.6 million years since significant sea ice did not regularly exist in the warm season in the Arctic Ocean.

The statistics of weather has already changed significantly because of global warming with far more extreme heat events, drought periods and heavy precipitation events than in the mid-20th century (see presentation by Dr. Aaron Thierry on shift to more extreme weather conditions; starts 12:30 min, recommend watching through 20:30 min; also see discussion of climate change on increasing extreme events by Dr. Stefan Rahmstorf). Going past tipping points far earlier than expected by climate models will increase the likelihood for far more extreme weather events as weather patterns and circulations change (in some cases difficult to predict ways). Clearly, the world still needs adequate mitigation and adaptation measures to deal with these rapid and possibly abrupt changes.

For more info into how climate change influenced global extreme weather events in 2016, see the latest report (issued today) by the American Meteorological Society with attribution studies on last year’s significant events.

–Meteorologist Nick Humphrey

If you like what you read and appreciate the time I put into writing on weather and climate topics, feel free to donate with PAYPAL. Every little bit helps a lot! Thank you!

Advertisements

Five Year Anniversary of Landfall of Superstorm Sandy

Five years ago today (October 29, 2012), the post-tropical remnants of what was Hurricane Sandy made landfall on the New Jersey coastline as a hurricane-force windstorm, causing destructive straight-line winds and historic, damaging surge from the North Atlantic extending from the Jersey coast north into the New York City Metro Area, with historic flooding of lower Manhattan.

Sandy_Oct_28_2012_1600Z
Image of extremely large Hurricane Sandy by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite on October 28, 2012. Sandy would become the largest tropical cyclone on record in the North Atlantic Basin.
Sandy produced widespread wind gusts of 75-90 mph across portions of New York and New Jersey with heavy rainfall totals of 7-10 inches across parts of New Jersey, Delaware, and Maryland. Storm surge was Sandy’s main cause of significant damage, with wind damage and flooding rainfall additional impacts. The post-tropical “superstorm” caused a 10-13 ft storm surge which damaged and destroyed homes and businesses along the Jersey Shore and Hudson Waterfront, with a record 13.88 ft water rise reported at Battery Park in Lower Manhattan.

Damage_from_Hurricane_Sandy_to_house_in_Brooklyn,_NY
Damage by Super Storm Sandy in Brooklyn, NY (“Proud Novice” on Wikipedia).
1200px-121030-F-AL508-081c_Aerial_views_during_an_Army_search_and_rescue_mission_show_damage_from_Hurricane_Sandy_to_the_New_Jersey_coast,_Oct._30,_2012
Super Storm Sandy damage in Mantoloking, NJ taken on October 30, 2012. (US Air Force).
1200px-Hugh_L._Carey_Tunnel_during_Hurricane_Sandy_vc
The flooded Brooklyn-Battery subway tunnel in NYC on October 30, 2012 (“vcohen” on Wikipedia).
Sandy’s expansive storm surge was more intense by multiple factors. As it came poleward, it grew significantly in size, a typical phenomenon for tropical cyclones moving into the mid-latitudes. However, Sandy’s weakening and mid-latitude interactions caused it become the largest North Atlantic tropical cyclone on record, producing a huge fetch (extensive wind over long stretch of open water). This fetch allowed for the building of significant ocean waves and piling up of water toward the shallow continental shelf of the Atlantic coast of the US. And although Sandy weakened somewhat and became “non-tropical”, this did not matter as the very large wind field remained and forward momentum of the very heavy ocean could not settle down in time before pounding the coastline with destructive surge.

In addition, Sandy made landfall at high tide, enhancing the storm’s ability to flood dry land areas and cause direct damage with battering waves. I will also note that this “flood reach” was even greater because of climate change-induced sea level rise. Global sea levels have risen 9 inches since 1880 and while the Intergovernmental Panel on Climate Change (UN) continues to indicate a likely sea level rise of up to 3.2 ft by 2100, many other reputable scientists have suggested the possibility of multi-foot sea level rise occurring this century as the result of exponential glacial melt feedbacks in Greenland and Antarctica. Perhaps as high as 6.5-16.5 feet by 2100 (see references #1-2 below). This, of course would be catastrophic for vulnerable coastal cities for both livability but initially for any places already exposed to storm surges. New York City is one most at risk.


Sea level rise has also been locally enhanced along the Northeast US Coast because of abnormally warm waters building offshore for years, leading to increased thermal expansion of the water surface upward. This may also be a result of climate change-induced weakening (#3) of the Atlantic Meridional Overturning Circulation (AMOC). While Superstorm Sandy wasn’t “caused” by climate change, it was part of an increasing regime of more extreme weather events (and events with with more extreme hazard variables) and a prelude to what will be far more frequent in the coming decades.

Sandy was retired after the 2012 Hurricane Season, causing 233 deaths from the Caribbean to the United States and producing an incredible $75 billion in damages (only 2nd to Hurricane Katrina). An incredible and devastating meteorological event which we can hope we continue to recover from and our country will be better prepared to mitigate against next time.

ussatsfc2012102921
Surface analysis at 5 pm EDT October 29, 2012 showing Superstorm Sandy just offshore the coast of New Jersey pounding the Mid-Atlantic to New England. The intense pressure gradient (shown by the isobars) caused areas of gale and storm force winds over the Great Lakes because of the expanse of the storm.
Scientific References (for the nerds like me!):

1- Hansen et al. 2016. (scientific technical)

2- New science suggests the ocean could rise more — and faster — than we thought (Washington Post/Oct 17)

3. Youtube video of conference presentation (2016) by Dr. Stefan Rahmstorf on weakening AMOC. Can also refer to (#1) on this issue as it relates to potential effect on ice sheet dynamics.

2016 State of the Climate: The Sobering Data

Today The American Meteorological Society, in collaboration with the National Oceanic and Atmospheric Administration released their yearly peer-reviewed “State of the Climate” report detailing the state of the global climate. It is…not positive at all.

You can see the full report HERE. But here are the bullet points:

-The report confirms, via independent datasets that 2016 was the warmest year on record for human observations (most world observations go back to mid-1800s). Not only for Earth’s atmosphere but for the Earth’s oceans.

DG4xSurUMAYE2gJ

 

DG4xFkRUIAIFEJO

-The Earth’s surface averaged 1.06-1.21 degrees C above pre-industrial levels (depending on datasets available). It is the second year in a row the global land and ocean temperature averaged over 1 degree C. The “danger” zone for destructive impacts on human society and ecosystems around the world according to climate scientists is 2 degrees C or higher. Even 1.5 C would begin to have very hazardous impacts.

DG4xpCXUMAIOkxW

-Global carbon dioxide concentration in Earth’s atmosphere (the main greenhouse gas being added by human activity) exceeded 400 part per million on average for the first time ever in human history. Not only that…This is the highest level in Earth’s atmosphere in at least 800,000 years based on data taken from ice cores. For comparison, pre-industrial levels of carbon dioxide concentration was approximately 280 ppm (only 150 yrs ago).

-The increase in the yearly average of carbon dioxide by 3.5 ppm from 2015 to 2016 is the largest increase observed in the 58 year history of observations.

DG4yBxfUMAE1SUj

-2016 featured significant portions of land areas suffering from “extreme heat”…heat above the 90 percentile compared to the 1961-1990 average temperature for the location.

DG4yOcJVoAAOcf9

DG4y7y3VwAAr06L

-2016 was the warmest year on record for the ocean, causing major stresses for ocean ecosystems, including coral reefs. Over 90% of global warming heating goes into the oceans (100+ zetajoules (1 x 10^23 joules) since 1993…it takes ~4 joules of heat to warm 1 gram of water by 1 degree C…it takes A LOT of energy to raise the temperature of water).

DG4zMXSU0AA3aq2

DG4zqJ7VwAEXvfT

-Sea levels are rising nearly everywhere, at different rates. Added water and thermal expansion by the heating of water are both factors. This is the 6th consecutive year of increase.

DG40CUdUMAEwDs1

-Severe drought impacted at least 12% of the planet’s land area each month of 2016 for the first time in history. (Note: The drought conditions in the Amazon Rain Forest in 2015-16 the third “100-year” event since 2005 with previous events in 2005 and 2010).

DG40XUUU0AAdezm

-Arctic sea ice had its lowest winter maximum on record and second lowest summer minimum on record in 2016. The mass of the Greenland Ice Sheet, which has ice up to 110,000 yrs old and has the ability to contribute to up to 7 meters sea-level rise is at a record low value.

DG40kOCVwAAj0fO

-2016 was the 37th consecutive year of worldwide Alpine glacial retreat.

-Across the Northern Hemisphere, snow cover was the 4th least extensive in the 47-yr record.

-Record high temperatures at 20 meters were observed at depth in permafrost observatories in Alaska and Canada.

-The United States had the 2nd warmest year on record in 2016 and the 20th consecutive warmer than normal year.


It’s interesting that this came out today because I was actually just beginning to write the draft to the next in the series of WxClimoEd “Understanding Global Climate Change“. But then this blew up my Twitter LOL. This pretty much gives me a good addition to what I would’ve discussed anyways. So let’s do just that…

It appears to me that we have crossed in the 2015-2017 period some crucial thresholds in the “era” of anthropogenic climate change. We are continuing to pump more carbon dioxide into the atmosphere than Earth can remove through natural processes. We are essentially heavily polluting our atmosphere with CO2. Earth itself appears to have become a “1 degree C” world in terms of average temperature and major impacts expected to develop as a result. In addition, while our atmosphere is heating up, our oceans are also taking in incredible amounts of energy, slowly heating up and it’s quite literally cooking our marine life, all while the oceans undergo acidification from the CO2 they are taking in which is also causing harm to ecosystems. Coral reefs are facing this head on along with hundreds of thousands of species with depend on them. This is discussed is in the documentary Chasing Coral, which I reviewed HERE.

This year…2017…continues to see further signs of major problems which were predicted to be likely results of climate change.

-The first six months of 2017 (January-June) was the second warmest on record behind 2016. It is also the second warmest on record for the United States.

8_8_17_Andrea_CC_Alaskarecords_1050_788_s_c1_c_cDGgXuS2U0AEGmx-

-July saw record heat for the Western US and Alaska including record July or all-time record maximum monthly temps and sea ice within range of the Arctic Ocean coast. Other cities such as Reno, NV and Salt Lake City had their hottest July’s ever. Miami set an all-time record hottest month ever. Death Valley, CA took its wild heat to another level with an average July temperature of 107.4 degrees F making it the hottest month ever recorded in the United States historical record.

Figure2

-Arctic sea ice is headed for (yet again) one of its lowest extents in the observational record.

8_7_17_Brian_MarkuseGreenlandFire_720_506_s_c1_c_c

-Boreal forests continue to burn at an unprecedented rate not seen in the past 10,000 yrs. Most notably significant fires have broken out in Canada and in the peat of the Arctic on the border of the ice sheet on Greenland.

I’ll write more about the IMPACTS of climate change…estimates of global and regional effects that I intended on writing about hopefully later this week in my regular post series. But in short…we really have no time to lose on this. Governments and citizens MUST do what they can…from individual efforts to industry…to get carbon emissions down. The more carbon dioxide goes into the atmosphere and higher temperatures rise, the greater the uncertainty as far as resulting phenomena such as climate feedbacks which could either hinder or enhance climate change, the latter of course worsening the situation faster. We as humans, we live our lives and we really have no idea how fragile how our world really is. We must realize how destructive a force we are so we can be constructive to ourselves and our world instead.

My Review of the Netflix Documentary ‘Chasing Coral’

Saturday night, I watched the Netflix original Documentary ‘Chasing Coral’ for the first time. It chronicles the work of Richard Vevers, an underwater photographer, as he works with scientists to both understand the significance of the recent deterioration of coral reefs over the past four decades; but also how to best capture that process of life to death to better communicate the threat of extinction to a largely oblivious world public.

I personally found this documentary to be extraordinary and disturbing. Both in the incredible destruction caused to the coral reef globally thus far, as well as the logistics required to allow us, the viewer to witness what marine biologists have witnessed over and over again for decades in just a quick time lapse. What they’ve witnessed is death following coral bleaching – the white discoloration of coral as the animals remove photosynthetic algae they depend on for over 90% of their nutrients from their flesh and become transparent, showing their white bones. They later die of starvation.

As they go into some detail in ‘Chasing Coral’, temperatures in the ocean have been rising steadily. This is directly attributable to global warming, the main process of global climate change caused by the human output of carbon dioxide emissions. What many people do not realize is that a vast majority of climate change’s warming is occurring in Earth’s global oceans. Earth is an ocean planet. And unlike the the air and land,  it takes a significant amount more heat energy to raise the temperature of water. With over 90% of the heat radiation being retained initially by our atmosphere is being put into Earth’s oceans, an increase of over 2 degree C (3.6 degrees F) for an enormous amount of water is incredible energy. And these spikes of 2 degree C heating above average beginning in the 1980s is what scientists discovered was the cause of coral bleaching when it was first observed in the early to mid-1980s. Since then multiple global bleaching events have taken place as the oceans have continued to warm.

This slideshow requires JavaScript.

‘Chasing Coral’ not only discusses the science of this process, but also shows the emotional toll taken on the scientists who have spent decades studying these beautiful animals and their structures, only to slowly witness their destruction. One older researcher basically says in reference to the dying Great Barrier Reef, “I’m ready to check out” in reference to not having to further witness “the whole ghastly mess” that is the death of such beautiful ecosystems. Depressing, but he reminds a younger researcher he speaks with that as long as they are alive they must continue to fight to protect and save what they love.

If there’s only one nitpick, it’s that the documentary didn’t go into enough detail as to the dangers the rapid collapse of the coral reef ecosystems would have on humans. But it really is a nitpick as 1) there’s only so much one can explain in limited time and 2) the real purpose of this was to illustrate the immediate life to death of the coral reefs themselves. A visual presentation is always more captivating and powerful to the human mind ultimately…and what we are witness really is the first stage of the ecological disaster which will impact humans at the other end of the Tree of Life. The documentary does go into some discussion of the fact that a quarter of ocean life depend in some way on living coral reefs and hundreds of millions of people depend on the ecosystems connected to reefs around the world for food and economic resources. Near extinction of reefs over just the next 20-30 yrs on top of other climate change related stresses from the ocean and atmosphere would be devastating for both dependent societies as well as other species. There is a major reason for nations to be involved in slowing climate change.

I highly recommend this documentary to all willing to watch it. A great use of 90 minutes of your time. I think it’s very important for the general public and other scientists alike to see the effect of climate change on nature and understand how much power we as humans have over it. It’s a power we must be responsible for. The irony of being on top of the pedestal as the most powerful life-form on Earth is that we are one of the last to suffer when things go wrong because we are so powerful and resilient. But, if we are not responsible and are cavalier about how much our world can actually handle from our lack of responsibility and stupidity, we (and other life) will pay. Humans and other life already are. ‘Chasing Coral’ serves as a stark warning with a ray of hope at the end.

Biggest takeaways from ‘Chasing Coral’- Care about your world. Stay educated and inform others.