New Warming Event Coming to the Arctic This Week into Next Week

Another anomalous warming event will be underway this week into next week in the Arctic, potentially impacting the Arctic Ocean sea ice. Basin average air temperature anomalies exceeding +3-4 C (~5.5-7 F) relative to pre-industrial/anthropogenic warming which began in the 18th and 19th centuries (the baseline for these maps is very recent…1981-2010, with an acceleration in global warming occurring just during that time). The Arctic has been warming much faster than the globe as a whole (twice as fast overall, 3-4 times faster in the interior Arctic). The Arctic had its warmest winter on record in 2017-18 with what were effectively “heat wave” events generated by either huge upper-atmospheric ridges of high pressure from a very high amplitude (very wavy) jet stream producing areas of intense warming; or “atmospheric rivers” of intense heat and moisture transport via intense ocean storms moving in from the Atlantic and Pacific eroding the sea ice sheet in the middle of winter by warm temperatures, high wave action and even rainfall. The Bering-Chukchi Seas of the far northern Pacific and Arctic Oceans have been the lowest sea ice extent on record, likely going back to the mid-19th century (the earliest records can be reconstructed).
Db0JRkSVwAA3GfVDcCfEUsVwAA1V1J
Climate change-related warming is melting sea ice rapidly, exposing more dark-blue ocean during the warm season, warming it and the atmosphere, contributing to further warming. It also has led to a weakening of the jet stream and winter time upper-atmospheric polar vortex which stabilizes the Arctic climate and upper-atmospheric circulation pattern, “vortex splitting” and much increases “waviness” in the jet stream, with increasingly extreme Northern Hemisphere winters (persistent areas of abnormal cold, warmth, with wet or dryness and very wild swings between the two states in some regions with strong mid-latitude cyclones produced by the temperature gradients). I discussed this more in a detailed post related to my personal observations of the effect the wild temperature variability has had on seasonality on the Great Plains.
For the Arctic, this new very abnormal warming period is unusual in that this is the middle of Spring and temperature variability typically decreases somewhat after winter. But the jet stream continues with its very high amplitude or “wavy” pattern. Lots of abnormal warmth across the Northern Hemisphere mid-latitudes, a couple notable cold spots, but now the Arctic will get assaulted by more heat from the warming mid-latitudes.
ANOM2m_CFSR_GFS_1804_monthly_mollw
Mean temperature anomalies for the month of April (1981-2010 baseline).
But this will be May warmth, not the warmth of January or February. The current sea ice extent, which is around the same as 2016 (which ended the year with the second lowest September minimum on record) may begin decreasing at higher rate, particularly as a days long period of abnormal warmth hits the Central Arctic Basin, which has relatively normal sea ice extent, but record low sea ice area (which subtracts areas within the max extent which are free of sea ice). So bringing in more heat is no good. The Arctic may become ice free in the warm season over the next decade and could do so abruptly.
-Below are Global Forecast System model depictions of temperature anomalies (relative to 1981-2010) over the Arctic over the next several days as storms move over the Arctic Ocean from Siberia and the far North Atlantic. The last image is the mean temperature anomaly over the next 7 days.
ANOM2m_f24_arcticANOM2m_f96_arcticANOM2m_f138_arcticANOM2m_mean_arctic
Here’s what those temperature anomalies actually translate too in actual air temperatures (forecast by the American GFS model). No part of the Arctic Ocean is below zero F, with the large swath above freezing on Sunday (and earlier).
us_model-en-087-0_modusa_2018050106_138_15056_217
I’ll also note, I saw evidence of this warming event in long-range models mid last week…and noticed it will coincide with the beginning of an extensive period of abnormal heat over Western North America (literally from the western US to portions of Alaska), with cooler than normal conditions over the Great Lakes and eastern Canada, with abnormal heating of Europe as well. Parts of Europe have already had periods of record heat in April, including Germany.

610temp.new

814temp.new
Probability of above or below normal temperatures during the 6-10 day period (top) and 8-14 day period (bottom). Very abnormal warmth likely over much of the Western US/Canada, with high probabilities in parts of Alaska and much of the Great Plains. This will continue drought conditions for the Southwest US.
14-km EPS Global undefined undefined 60
European Ensemble Model’s ensemble mean temperature anomaly forecast for Europe valid 12 UTC May 3rd. Periods of abnormally warm temperatures appear likely across the region between now and next week.

–Meteorologist Nick Humphrey

 

 

 

 

 

 

Advertisements

Update on Severe Weather Threats for Tuesday-Wednesday

So Tuesday and Wednesday are still looking like potentially very active days for severe thunderstorms on the Central and Southern Plains. Tuesday’s event will be focused in my neck of the woods…the most intense activity expected over Southeast Nebraska, Southwest Iowa, into far Northwest Missouri and much of Northern Kansas. Wednesday event will be much more extensive. Most intense activity currently likely over far Southeast Nebraska into western Missouri, the eastern half of Kansas and much of western and central Oklahoma.
 
While Wednesday has garnered a lot of attention, looking at computer model trends, it appears Tuesday has the potential to be an intense day for significant severe weather. The combination of favorable vertical wind profiles (wind shear), instability (for rising motions) and increasing low level moisture (needed for enhancing the instability) is increasing the risk for scattered rotating supercell thunderstorms to develop during the afternoon ahead of a southwestward moving cold front and northeast of a surface low over northern Kansas.
The shear profiles being shown in the lowest levels of the atmosphere and the moisture content for lower thunderstorm bases means these supercell storms may be longer lived than expected in earlier forecasts and therefore capable for producing multiple tornadoes and perhaps an isolated strong tornado (EF-2 or stronger).
day2probotlk_1730_any
The Storm Prediction Center has indicated that there is a 10%+ risk of a strong tornado over the hatched region. There is also an elevated risk for very large hail in the supercells as strong updrafts will be allowed to build very thick hailstones (2 inches+). Damaging winds are of course likely over the region under some storms (60 mph gusts+). 
Meanwhile, Wednesday remains likely to be a significant event day for a large area, although it will be complicated. Areas from Central Oklahoma through Central Kansas to extreme Southeast NE could see an enhanced threat for very large hail and multiple tornadoes, including a higher strong tornado potential possible if the set up lives up to its full potential, but that is still up in the air. There are still questions about coverage and when storms will begin (too many starting earlier in the afternoon will mean a “messy” event with lots of storms and not as many isolated storms to produce stronger tornadoes). There is also some variability about how far north the warm sector will be into Southeast Neb/Southwest IA in the wake of the Tuesday storms, which could mean a greater risk for my area yet again.
day3prob_0730
Much to be determined! Stay tuned for updates if you live in these areas.
–Meteorologist Nick Humphrey

Severe Weather Threats for Central Plains Monday-Wednesday

After a start to a 2018 tornado season which has featured numerous tornadoes across the Deep South and even scattered tornadoes out West, but not a single tornado in Nebraska, Kansas or Oklahoma, it appears near certain the tornado drought for the Great Plains will come to an end early next week. Something which as been missing thus far…pattern favorable to severe for widespread severe thunderstorms across the Central and Southern Plains…will ramp up beginning Monday across the High Plains, shift eastward Tuesday with a peak higher-end risk for more widespread severe storms Wednesday. The jet stream, the river of air separating the cold Arctic from the warmer mid-latitudes will send a major trough of low pressure over the Western US, temporarily cooling that region down, warming up the Plains, bringing in greater moisture from the Gulf of Mexico and setting up the ingredients for multiple days of severe storms.

 

trough
European Model forecast depiction of trough of low pressure in the upper-atmosphere over the Western US (forecast for 7 am CDT Tuesday May 1st). This system will contribute to severe weather for the Great Plains Monday-Wednesday.

A brief review since it’s been forever since the Plains have had severe weather and there might finally be something in my neck of the woods. Severe weather is defined by the phenomena. In the US, the criteria, which weather warnings revolve around are 1) large hail of 1 inch or larger, 2) damaging wind gusts of 50 knots/58 mph or higher or 3) a tornado. Severe convection (thunderstorms) needs three major ingredients to maximize their potential. 1) Instability, 2) Moisture, 3) Wind Shear. Instability is positive buoyancy (tendency to rise). This is aided not only by heat, but also by moisture as moist air is less dense than dry air at the same temperature. Wind shear is the change in speed and direction of the wind with height. Winds which turn and increase in speed rapidly with height can promote storm rotation, allow them to form isolated cellular structures called supercells. These can be long-lived, self-maintained and produce the most intense severe weather.

c_fit,fl_progressive,q_80,w_636
Schematic of a classic supercell thunderstorm.

Of the three days I’m most concerned about for severe weather this week, Wednesday appears to be the most serious for the Central/Southern Plains for significant severe weather. But let’s take a quick look at all three days.

Monday, April 30th-

day3otlk_0730

The National Weather Service Storm Prediction Center has a Slight Risk of severe weather (2/5 on the scale) for much of the high plains from Texas through Kansas and then, extending farther eastward into Central/NE Nebraska into SE South Dakota. This covers a 15% chance of severe thunderstorms within 25 miles of a point. A more “Marginal Risk” exists surrounding it. This would be for the afternoon and evening hours as a weak disturbance moves out of the Rockies, increasing wind shear and temperature-based instability (upper-atmosphere cooling relative to warming near the surface…warm air rises into colder air) modestly for isolated severe weather. Large hail and damaging winds are the primary hazards, but moisture will be limited, keeping the event from being widespread.

Tuesday, May 1st-

day4prob (1)

Beyond Day 3, there are now categorical outlooks, only probabilities. A 15% chance of severe thunderstorms within 25 miles of a point exists over Eastern Nebraska, Western Iowa, much of northern and Central Kansas into Western Oklahoma. This will likely be a bit more vigorous event from Monday, with the Tuesday disturbance being stronger with better shear profiles, more low level moisture available, and the combination of abnormally warm temperatures and higher moisture will mean higher atmospheric instability for tall, intense thunderstorms with strong updrafts. The storms will likely begin as supercells across Nebraska and Kansas before merging in the evening into an organized structure known as a “mesoscale convective system”. Basically a larger scale complex which can bring locally heavy rain and extensive damaging wind gusts. The initial storms will form along a cold front and threaten damaging winds, large hail and an isolated tornado.

Wednesday, May 2nd-

day5prob (1)

Wednesday is currently the most serious day for severe weather, but some uncertainty still exists. A 30% chance of severe thunderstorms within 25 miles of a point exists from extreme SE Nebraska, across much of Kansas, into western and central Oklahoma. A greater 15% area extends beyond  that, including my area of Lincoln, NE. Wednesday, the main upper-level trough of low pressure over the West (seen in the above map) begins to shift eastward and a surface mid-latitude cyclone sets up over the central and southern  Plains. A dryline (boundary separating warm, moist air from the Gulf of Mexico to the east from dry desert air from the Southwest US) will be located north-south somewhere over central KS/OK with a warm front either over Southeast Nebraska or Northeast KS (this is in question). The ingredients overall suggest robust thunderstorms forming along the dryline and near the area of low pressure (at the the intersection of the dryline and warm front) either in the afternoon or early evening Wednesday which vigorous supercells capable of producing large hail, some significant, damaging winds and multiple tornadoes. A possibility exists for a few of the tornadoes to be strong (EF2+; see more about the Enhanced Fujita Scale) and because of the persistent upper-level dynamics and buoyancy, storms could last after dark, posing nocturnal hazards. Later, storms will eventually merge producing greater high wind and heavy rain threats. Isolated flash flooding could be an issue Wednesday night from any heavy rain events.

For me personally, the the greatest threat for severe weather Wednesday seems to be to my south, but given the lead time, I’m watching to see how the position of the warm front ends up. If it migrates northward in the forecast and my areas is more solidly in the “warm sector”, then we will be just under as much of a hazard as the current 30% area is now. However, I note from forecast experience that warm fronts in severe storm events are notoriously challenging to forecast for as even the day of the event as they can have difficulty moving as far northward as expected because of the cold air they must erode out ahead of them. Much can also depend on the storms the previous day and how they effect the overall regional environment (temperature profiles, areas of instability, position of fronts, etc). But Monday-Wednesday all have potential to be hazardous days with Wednesday being a more potentially significant tornado day after months of silence.

9-km ECMWF USA Surface undefined undefined 108
European Model forecast depiction of Precipitable Water at 7 pm CDT Wednesday (how much atmospheric moisture is available for precipitation in an instantaneous moment). This does not say how much will fall, but just how moisture laden the atmospheric column is. The plume of abnormally high PW will mean the potential for storms with locally heavy rainfall.
9-km ECMWF USA Surface Nebraska 2-m Dew Point 114
European Model forecast depiction of dew point temperature at 1 am CDT Thursday May 3rd. Dew point is a measure of atmospheric moisture. The air behind the warm front and ahead of the dry line is warm and moist (with dew points above 60 F at this time), while the air ahead of the warm front is cool, with less moisture. The air behind the dry line is extremely dry and warm (dew point temperatures in the teens and 20s F).
9-km ECMWF Global Wave United States Simulated WV Satellite 108
European Model forecast simulated upper-atmospheric water vapor imagery for 7 pm CDT Wednesday. The computer model simulates what the weather satellite water vapor channel may see Wednesday night as far as cloud structures. Water vapor imagery is a special type of infrared imagery where water vapor concentration in the upper atmosphere can be detected based on its “brightness temperature” (upper atmosphere is moist, it appears bright, upper atmosphere is dry, it appears dark, meaning water vapor is warm, located at lower level of the atmosphere). Here, the water vapor imagery is enhanced with colors to better interpret the temperature of the condensed water (clouds). We can see intense thunderstorm formation over Kansas at this time (likely supercells) with some further development into Oklahoma as well. This is NOT LIKELY how it will look exactly Wednesday evening, only a general idea of the storm structures based on the larger-scale flow pattern and expected ingredients for storm formation.

So stay tuned early next week. The weather will definitely be news yet again this Spring! Stay safe and be ready this week in these regions!

–Meteorologist Nick Humphrey

The Struggle of the Trees in the era of increasing extremes

As the Arctic continues to warm abruptly because of anthropogenic climate change, the jet stream is exhibiting increasingly high amplitude waves later into the Spring growing season. This has been an apparent pattern through recent decades, but has become more pronounced in recent years. You can learn more about the research of Arctic amplification and the jet stream HERE (Dr. Jennifer Francis) and a more real-time analysis at the time HERE (January 2018; Paul Beckwith). Climate change is becoming abrupt enough, its changes on weather, long-term climate patterns and biology can be seen on yearly to seasonal timescales, where before, changes were over decades. So fast, scientific research can barely keep up and every story has “[faster, bigger, worse, more, etc] than expected”. Been the dizzying mantra of late-2017 into 2018 actually. It’s been rough on early agricultural activities in North America and Europe and it’s also been hard on trees trying to get started on first leaf growth.

Here in Lincoln, NE, the trees the week of April 24th have been struggling to get started with leaf growth. Lilacs are running 16-20 days behind first leaves because it has simply been too cold. We’ve had a few more warm days, recently, but yesterday and today…more chill.

six-leaf-index-anomaly

Here’s a photo of my son from this time a year ago. Notice the trees.

IMG_4670

Here’s from a walk I took on Monday.

IMG_4668IMG_4669

Tuesday…

IMG_4677IMG_4674IMG_4673

Seeing so many leaf-less trees with only some trying to bud has left me with a weird spooky feeling going for walks. And on Monday, walking down the street for thirty blocks (longest walk I’ve done in awhile) was actually hot because of the lack of shade from any leaves. And if you want to know just what stresses these trees have been through, it’s not just about persistent chill over the course of weeks. Very extreme temperature variability as well.

-April 13th. High temperature 82 F after the passage of a strong warm front associated with the powerful midlatitude cyclone which produced blizzard conditions across the Northern Plains and severe weather in the Deep South that week/weekend.

30714332_10216213192629551_2960938261331866493_n

April 14th. Twenty-four hours later. Non-diurnal temperature drop from April 13th’s high to 32 F following the passage of a powerful cold front. This was the most extreme temperature change I’ve ever experienced at the same location (and this photo is from the same parking lot as above, looking in the opposite direction). I’ve lived in Seattle, WA, Lincoln, NE and Brookings, SD. 50 degree F temperature drop. From early-June to early-February weather conditions.

30727410_10216214153533573_4377027034297317975_n

Other locations, such as in Oklahoma experienced temperature changes last week of 50-60+ degrees in 10 hours (near freezing to around 100 degrees)!!

More persistent warming and less temperature variability is expected this weekend into next week. It may finally start to feel like Spring where I am. Severe weather looks possible to impact the Southern Plains next Tuesday and Wednesday. One oddity of note are no tornadoes reported so far in Nebraska, Kansas, or Oklahoma in 2018. Nebraska typically averages (1991-2010) six tornadoes during the January-April period, with Kansas and Oklahoma averaging 17 tornadoes. But so far…zero for all three states. Nebraska has been too cold and Kansas and Oklahoma have either been too cold and dry with occasional extreme heat (by April standards…again, 90s to  near 100 in the arid drought areas). Extreme to exceptional drought conditions with little rain (and obviously few thunderstorms) have been plaguing the Southern Plains for months. Some storms in May may decrease in intensity of the drought mildly, but very destructive drought conditions for agriculture and hydrology will continue across the Southern Plains and Southwest US. Hoping it will not spread north into Nebraska, but abnormally warm conditions are expected across the southern half of the Plains this summer. Harsh on the plants and crops going from long cold to a long, hot summer. Not to mention more monster wildfires and dust storms. Oklahoma suffered unbelievable wildfires last week.

30167356_10216236868181425_8794275210332247129_o
Wildfires which were ongoing the afternoon of April 17th in SE Colorado, Western Oklahoma, and the Texas Panhandle.
30168114_10216236868221426_92234326907077284_o
A dust storm captured by satellite over drought-stricken eastern Colorado and western Kansas the afternoon of April 17th.

Check out this extensive (of what at the time was live) video on April 17th of the wildfires in Western OK as they were being chased by KFOR (Oklahoma City) reporters Val and Amy Castor. It’s 3 hrs worth of video, but it’s a Facebook video, easy to fast-forward through and you can see how bad the fires were as they happened.

20180424_usdm

As mentioned, severe weather may escalate on the Southern Plains (at least Oklahoma and North Texas) next week. Nebraska has been fairly quiet on the severe storm front, but with the clmatological peak months coming (May/June), there will likely be an escalation of activity. Still remains how much more activity there will actually be. While one needs wave action in the polar jet stream to stimulate the movement of warm-moist air from the Gulf of Mexico and vertical wind shear needed for rotating thunderstorms, very pronounced troughs right over the Plains with large ridging extending into Western Canada can mean cool air intrusions to the east and much of the severe weather and heavier rainfall restricted to the southeastern Plains and Southeast as has been the case much of the winter. The now weakening La Nina pattern of the El-Nino Southern Oscillation has been partly to blame for this (as well as other randomly oscillating “teleconnection” patterns”). However, in addition, the intense climate change-induced Arctic heatwaves in this winter’s polar night (climatologically extreme heat, record low ice extents, ‘atmospheric rivers’ of heat and moisture and ocean storms in the Arctic Ocean) caused the wintertime stratospheric polar vortex maintaining the circulation around the Arctic to split. This has become increasingly consistent and more intense in its effect on the Arctic and mid-latitudes the past few winters. This produced very wavy jet stream patterns and areas of abnormally very cold conditions over Europe and the Central US as well as the repeated nor’easter pattern offshore the East Coast in March.

-Splitting and migration of the winter polar vortex in the stratosphere (10 millibar pressure surface, so lines are lines of equal height…above 33,000 ft in the mid-latitudes generally).

 

This slideshow requires JavaScript.

There are signs in the long-range ensemble models that a highly amplified high pressure ridge build over Western North America late next week into early the following week, providing persistent abnormal heat and of course dry conditions. This would consistent with a pronounced positive phase of the Pacific-North American Pattern (PNA) which features abnormally high mid-atmospheric pressures and surface temperatures over western North America. Such a pattern would also decrease severe storm and rainfall potential on much of the Plains during the second week of May. While severe storms are never a positive for safety, the rainfall from convection is always a plus for keeping drought conditions at bay and the northern Plains are in need of regular rainfall as many places not in drought are still suffering precipitation deficits on the month and/or year. If Arctic sea ice retreats rapidly this melt season (and we’re within years of sea ice disappearing in the warm season), this may promote very amplified upper-level high pressure systems this summer as the low albedo (reflectivity) of exposed dark ocean warms the lower atmospheric column, causing thermal expansion and causing any upper-level high pressure systems overhead to respond with greater poleward amplification and strengthening. This could mean very anomalous heat and dry conditions in the summer which persist. This possibility seems focused on the West, although unusually high heat and continued extensive drought may impact the Southern Plains, depending on how the pattern regime sets up. Very important for agriculture this season which I’ll be watching. California, in particular, seems to be progressing into the climate change-induced “weather whiplash” pattern of extreme drought-rainfall, which will only worsen in the coming years. Intensifying drought this summer and the possible return of El Nino later this fall (still up in the air on that) could cause more of this. Lots to keep track of this year.

—Meteorologist Nick Humphrey

If you want to know what to know what an “extreme weather day” is…look to today.

Today/tomorrow’s mid-latitude cyclone on the Great Plains and Midwest will be a powerful one and one which will provide something for everyone. Blizzards, wind, severe storms, flash flooding, fire…pick your poison, Nature will provide.

In places like Minneapolis and much of Nebraska, this storm threatens to be a historic late-season April heavy snow or blizzard event. In the southern Midwest and South, it threatens heavy rain, flooding and a tornado outbreak. On the southern Plains, strong winds and arid conditions, could further yesterday’s extreme fire behavior. Stay safe out there folks!

A reminder, I will be interviewed on the internet-based program Environmental Coffeehouse at 9 pm EDT/6 pm PDT tonight! A livestream will be available on their public FB page (so you should be able to see it regardless of whether you have a FB page or not). I will discuss abrupt climate change and increasing extreme weather events and how current events (ocean heatwaves, changing jet stream, etc) connect to our rapidly changing climate.

CODGOES16-continental-conus.02.20180413.181722-over=map-bars=none
The beast of an extratropical cyclone over the Great Plains today.
92fndfd_init_201804131294fndfd_init_2018041312

98fndfd_init_2018041300
Progression of the Great Plains/Midwest Cyclone Friday-Saturday.
day1_psnow_gt_04

day2_psnow_gt_04
Probability of at least 4 inches of snow during the 24 hr period.

day1otlk_1630
Moderate Risk of severe thunderstorms (Level 4 out of 5) over Central and Southwest Arkansas and extreme northwest Louisiana and small portion of East Texas. Multiple tornadoes possible in the region, with isolated strong tornadoes. Damaging winds and very large hail also possible across a larger region from Iowa southward.

94ewbg
Moderate Risk (Level 4 out of 5) of Flash Flooding across much of central and southern Arkansas into far northern Louisiana based on possible 1 to 3 inch rainfall rates.

day1otlk_fire
Extremely Critical Fire Risk (3 out of 3) from southern and Southwest New Mexico into West and North Texas and and western Oklahoma. Conditions exist for extreme fire behavior. Threat is being enhanced by winds associated with today’s cyclone.
If you’re wondering why all this is happening…VERY amplified…or in other words…very wavy jet stream pattern bringing extremely cold air (by April standards) down from from Canada to meet with up with extreme warm air (again by April standards) up from the south. Temps in 20s and 30s to the north with a high of 101 in Western Oklahoma yesterday to the south. Right now Lincoln, NE (where I am) is hitting 80 degrees for the first time this year. Tomorrow, Lincoln will peak in the mid-30s with falling temperatures!

us_model-en-087-0_modusa_2018041312_7_15823_449
Massive long wave trough moving over the High Plains from the intermountain West of the US. The trough dips as far south as extreme northern Mexico.
The front end of this trough caused the development of the surface cyclone over Nebraska, intensifying deep moisture movement from the Gulf of Mexico (which, by the way, as a moisture source region, is running well above normal to start the year) and as and providing the deep vertical wind shear (rapidly increasing wind speeds with height) need to generate sustained severe thunderstorms. A recipe for a multi-threat mid-latitude frontal system. And it will not stop anytime soon. Saturday night, the threat will spread eastward, where a significant ice storm event may be possible for portions of upstate New York. In fact, Saturday afternoon, there may be much of Pennsylvania in the 70s while much of Upstate New York may be in the 20s! Incredible temperature contrasts for such a relatively higher latitude location.

NAM-WRF 3-km undefined undefined 32
One model depiction (North American Model) show significant temperature contrasts over relatively short distances along a warm front near the PA-NY border Saturday Afternoon. NAM is a colder solution and there are disagreements on where freezing rain line may end up, but any major freezing rain this late in the season in Upstate New York will be quite unusual.

—Meteorologist Nick Humphrey

 

Interview on Friday Night

Friday Night, I’ll be interviewed on the internet live show Environmental Coffee House by host Sandy Schoelles. The show (started by a concerned non-scientist interested in the environment, science and technology) discusses a variety of environmental and climate issues. I’ll be brought on to talk about increasing extreme weather events, climate change and abrupt tipping points, and environmental destruction, including the 6th mass extinction. The show will be live streamed on Facebook and has thousands of followers. Give it a watch, it’ll be a serious discussion (maybe 30-40 mins), but should be fun.

30531122_1230567777073704_7859670450941460480_n

Below are some articles which may relate to what we discuss in the interview. Almost all are VERY recent articles! (First three articles are technical peer-review papers, remainder are recent news articles for non-scientist consumption).

Warm Arctic Episodes Linked to Increased Frequency of Extreme Winter Weather in the United States (Nature Communications; 2013)

The roles of aerosol direct and indirect effects in past and future climate change (Journal of Geo. Res. Atmos.; 2013)

Earth’s Energy Imbalance and Implications (Atmos. Chem. & Phys; 2011)

Gulf Stream current at its weakest in 1,600 years, studies show

Land suitable for certain California crops expected to shrink

Paris Agreement alone won’t stop Arctic ice from melting, studies contend

Land degradation pushing planet towards sixth mass extinction

Why ozone poses a challenge to food security

Researchers connect the data to show an accelerating trend for marine heatwaves in our oceans

Dahr Jamail | Thanks to Climate Disruption, Earth Is Already Losing Critical Biosphere Components

Broken records, remarkable stats made 2017 hurricane season one for the history books

Two degrees no longer seen as global warming guardrail

More science-y but still understandable for non-scientists. Presentation by Dr. Peter Carter on major threat to food production in the United States bread basket by extreme heat: YouTube Video (2017)