Arctic Sea Ice Extent Rapidly Decreasing Because of Climate Change; Weather & Climate Implications

Today, NOAA presented the State of the Arctic report at the American Geophysical Union annual conference in New Orleans. The news from the report was devastating for potential weather and climate impacts. Lots of important info to talk about from this! Let’s summarize:

  1. Annual Arctic sea ice extent is the lowest in 1600 years. This is based on proxy data (tree rings, lake sediments, ice cores from the Greenland Ice Sheet). There has been an abrupt decrease in extent during the 20th century (continuing to present). 24991395_10215050817330895_108575701643656859_n
  2. Arctic sea ice extent reached a record minimum in the warm season in 2012. However, 2015-17 witnessed consecutive record low maximum extents in the cold season. 2016 also had the lowest extent on record in November or December. 2017 is also witnessing top two or three low daily extents in November into December, with record low sea ice in the northern Bering Sea and the Chukchi Sea (north of the Bering Strait between Alaska and Russia). Also very notable, sea ice VOLUME (which includes thickness of ice) has continued to suffer with 2015-17 in the top 4 for the lowest volume on record going back to 1979 (and based on decreasing of sea ice extent and thickness, likely much much longer than that). Multi-year ice…ice more than a year old…is now nearly extinct in the Arctic Ocean.

    siv_annual_max_loss_and_ice_remaining
    Arctic Sea Ice Volume since 1979. Note consistent and accelerating collapse of sea ice volume. Arctic ice volume may fall below the 2012 record at some point in the month of September in the next several years.
  3. The Arctic had its warmest year on record in 2016 and its second warmest year on record in 2017 in reliable records. The climate of the Arctic is warming to the point that permafrost is increasingly melting releasing methane and carbon dioxide, methane emissions from what are called methane hydrates (methane gas locked in water ice) are increasing from the very shallow continental shelves surrounding the Arctic Ocean and mid-latitude weather patterns are becoming altered because of reduced sea ice (more on this shortly). The Arctic tundra is also greening at an increasing rate because of rapid warming.
  4. NOAA specifically states that “the Arctic shows no signs of returning to a reliably frozen region of recent decades” because of continued climate change related warming.

Discussion – Leaving the Ice Age Era:

One thing that we must remember about the sea ice of the Arctic Ocean (and the Southern Ocean around Antarctica) is that sea ice is a product of Ice Age eras. Our planet has had a tendency historically to flip between two global climate equilibrium states with dramatically different regional weather and seasonal patterns. The Ice Ages and the Hot House “Jurrasic Park” climates have been the two long-term dominating climate regimes in Earth’s history. One characterized by huge ice sheets and low sea levels, the other characterized by no ice sheets, no sea ice and high sea levels. Human civilization has flourished in the latest interglacial period in the Ice Age era because the climate has remained largely stable for roughly 10,000 years (-1 to +0.5 degrees C relative to mid-20th century climate) and mild enough to for extensive agriculture and settlements.

a-2.earth_temperature_record
Estimated temperature of Planet Earth from 550 million years ago to the end of the 20th century.

But now, because of Anthropogenic Global Warming (AGW) from climate change, we are leaving that stability in the geologic blink of an eye.

globalwarming_projected.jpg.CROP.original-original
Projected rise in global temperature of 4 degrees C/8 degrees F (relative to mid-20th century) during the 21st century relative to the past 10,000 years.

Probably the most important regulars of climate during Interglacials are the “refrigerators” of the north and south…the Arctic Ocean sea ice and Antarctic Ice Sheet (also Greenland Ice Sheet). However, as temperatures warm because of human carbon dioxide emissions trapping heat in the global climate system, that heat warms the atmosphere and ocean, attacking the sea ice by providing excess latent heat of melting. For the Arctic, this reduces the sea ice extent and volume decade after decade. Eventually, it will get to a point, where sea ice will become so thin and tenuous, it will undergo collapse to what has been called a “blue ocean” event with 1,000,000 sq km or less ice at a minimum in September (2012 extent minimum record was 3.41 million sq km). The 2016 and 2017 extent minimums were in the top 10 with 4.14 and 4.64 million sq km, 2nd and 8th respectively. 8 of the top 10 warm season minimum extents (in km) have occurred since 2010 in the now 39 year record. The Arctic Ocean and lower atmosphere are warming and becoming more like the high latitude North Atlantic. Eventually sea ice is expected to disappear completely in the warm season in the Arctic. Some climate scientists have suggested over the past several years that the “blue ocean” event resulting from a collapse of sea ice extent could occur between 2015-2020 or so as multi-year ice has nearly gone extinct, leaving thin ice vulnerable to quick melting and battering waves from cyclones. Computer models have been terrible at dealing with the end of sea ice in the Arctic, suggesting it would stick around into the second half of this century.

Discussion – Weather and Climate Implications:

So why does loss of sea ice matter? Sea ice regulates the climate of the world in multiple ways. It acts as large white surface which reflects most of the shortwave solar radiation from the sun (high albedo). As a result, it keeps the Arctic and Northern Hemisphere (and world) cooler than otherwise. It’s wide physical presence means heat entering the Arctic Ocean goes into melting the ice in the warm season (latent heat of melting; heat goes into phase change of water from solid to liquid) instead of heating the ocean and atmosphere dramatically (sensible heat to change temperature). Losing sea ice ends its presence as a climate regulator, allowing for more abrupt warming of the atmosphere-ocean system and increasing moisture content in the atmosphere (water vapor is an additional greenhouse gas; and increased clouds may reflect some radiation, but also can limit cooling in darkness). In addition, the Arctic Ocean will warm as it is a dark surface (low albedo). Increasing ocean warming in the marginal seas of the Arctic Ocean is already leading to increased methane emissions from the shallow continental shelves (as subsea permafrost thaw the clathrates) and more rapid warming will lead to an increase in emissions of methane and carbon dioxide from land permafrost (see discussion by Arctic climate scientist Dr. Peter Wadhams of Cambridge University on YouTube). Methane is over 100 times more powerful greenhouse gas than carbon dioxide on a timescale of several years (it dissipates far faster in the atmosphere, but sudden releases can increase warming quickly). And all of these feedbacks will much more quickly destroy the sea ice extent through further warming for a longer period in the warm season until ice disappears completely.

Increased warming of the Arctic also has impacts on mid-latitude weather. There has been research suggesting that the jet stream can be strongly influenced by Arctic warming and sea ice extent (see discussion by Dr. Jennifer Francis on YouTube). This can include a weakening of the upper-level jet stream which depends on the temperature difference between the upper-level mid-latitudes and polar atmosphere (known in meteorology as “baroclinic instability”). This weakening can lead to the jet stream developing high-amplitude waves more frequently, allowing for powerful upper-level ridges of high pressure to develop and cause blocking of the progressive westerly flow. This blocking can cause more frequent stagnant weather for locations, developing droughts in some areas through prolonged dryness, long periods of heavy precipitation in other regions as well as places of very abnormally warm temps (greater extreme summer heat) vs. colder temperatures (but the warmth always significantly outpaces the cold). Increased warming of the atmosphere in general also increases rainfall rates. In addition, paradoxically, while parts of the mid-latitudes may go through below normal temps and cold weather, the powerful ridging can produce extremely abnormally warm temperatures over the Arctic regions, intensifying the warming of the far north.

An identical pattern to this has largely set up over the Northern Hemisphere November into December.

us_model-en-087-0_modez_2017121312_24_5477_449
Powerful high-amplitude ridges over the Eastern Pacific and North Atlantic. Pattern relatively stagnant at this time.
ANOM2m_past30_equir
Reanalysis of the average temperature of Earth and specified regions over the last 30 days (1981-2010 baseline…add 0.7 C to compare to late 19th century). Note extensive, persistent anomalous warmth of the Arctic.

These effects may overall lead to more abrupt warming of the world as a whole as well as (more importantly) changes in rainfall and snowfall patterns, relevant for crops and food security from increasing summer extremes (heat stress and heavy rainfall) and water resources (snow pack, groundwater, etc). Also relevant for forest health (destruction by increasing wildfires as well as bug infestations killing hundreds of millions of trees in the Western US). And a running theme in stories on climate change recently? “Faster than expected” or “Faster than previously thought”. The importance of Arctic sea ice cannot be overstated and, unfortunately, this major tipping point…which I would consider a “keystone” tipping point because of what effects it can have down the line on other parts of the climate system…seems to be on the brink. It has been 2.6 million years since significant sea ice did not regularly exist in the warm season in the Arctic Ocean.

The statistics of weather has already changed significantly because of global warming with far more extreme heat events, drought periods and heavy precipitation events than in the mid-20th century (see presentation by Dr. Aaron Thierry on shift to more extreme weather conditions; starts 12:30 min, recommend watching through 20:30 min; also see discussion of climate change on increasing extreme events by Dr. Stefan Rahmstorf). Going past tipping points far earlier than expected by climate models will increase the likelihood for far more extreme weather events as weather patterns and circulations change (in some cases difficult to predict ways). Clearly, the world still needs adequate mitigation and adaptation measures to deal with these rapid and possibly abrupt changes.

For more info into how climate change influenced global extreme weather events in 2016, see the latest report (issued today) by the American Meteorological Society with attribution studies on last year’s significant events.

–Meteorologist Nick Humphrey

If you like what you read and appreciate the time I put into writing on weather and climate topics, feel free to donate with PAYPAL. Every little bit helps a lot! Thank you!

Advertisements

Author: Meteorologist Nick Humphrey

Meteorologist and geoscientist in Lincoln, NE. Seattle, WA native. Love weather, storm chasing/photography and planetary science.

One thought on “Arctic Sea Ice Extent Rapidly Decreasing Because of Climate Change; Weather & Climate Implications”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s